Sense and avoid in UAS: research and applications

Sense and avoid in UAS: research and applications

Angelov, Plamen

97,96 €(IVA inc.)

State-of-the-art in research in this challenging yet crucial and topical field, addressing the challenges associated with sense and avoid systems in UASs/ UAVs in their complexity and entirety.Sense and avoid systems are a key technology in the fastest growing field of aircraft development - unmanned aircraft systems. Sense and Avoid in UAS: Research and Applications addresses the challenges associated with sense and avoid systems in UASs/ UAVs in their complexity and entirety. Encompassing the state-of-the-art in research in this challenging yet crucial and topical field, it isauthored by leading practitioners and researchers from three different continents worldwide working on úmulti-million research programmes such as ASTRAEA. Highly original, it fulfils the currentgap in the published literature on sense and avoid covering views and analyses from sensing to guidance to human factors to regulatory issues. The authors assume some basic knowledge of aviation navigation and aerodynamics, but address principles rather than complex mathematics.Addresses the challenges associated with sense and avoid systems in UASs/ UAVs in their complexity and entiretyFulfils the current gap in published literature on sense and avoidCovers views and analyses from sensing to guidance to human factors to regulatory issuesAuthored by leading researchers as well as industry practitioners worldwide. INDICE: Part I INTRODUCTION..1. Introduction (by G. Limnaios, N.C. Tsourveloudis, K.P. Valavanis)1.1. UAV versus UAS.1.2. A Historical Perspective on Unmanned Aerial Vehicles.1.3. UAV Classification.1.4. UAV Applications1.5. UAS Market Overview..1.6. Fault Tolerance for UAS1.5. References.2. Performance Tradeoffs and development of Standards (by A. Zeitlin)2.1. Scope of Sense and Avoid.2.2. System Architectures.2.3. Sense and Avoid Services and Sub-functions.2.4. Sensor Capabilities.2.4.1. Airborne sensing2.4.2. Ground-based sensing.2.4.3. Sensor parameters.2.5. Tracking and Trajectory Prediction.2.6. Threat Declaration and Resolution Decisions.2.6.1. Collision avoidance2.6.2. Self-separation.2.6.3. Human decision vs. algorithm..2.7. Sense and Avoid Timeline.2.8. Safety Assesment2.9. Modelling and Simulation.2.10. Human Factors.2.11. Standards Process.2.11.1. Description.2.11.2. Operational and functional requirements.2.11.3. Architecture.2.11.4. Safety, performance and interoperability assessments.2.11.5. Performance requirements.2.11.6. Validation.2.12. Conclusion.2.13.References.3. Integration of SAA capabilities into a UAS distributed architecture for civil applications (by P. Royo, E. Santamaria, J. M. Lema, E. Pastor and C. Barrado)3.1. Introduction.3.2. System Overview..3.2.1.Distributed system architecture.3.3. USAL Concept and Structure.3.4. Flight and Mission Services.3.4.1.Air segment3.4.2. Ground segment3.5. Awareness Category at USAL Architecture.3.5.1. Pre-flight operational procedures: flight dispatcher.3.5.2. USALSAA on airfiled operations.3.5.3. Awareness category during UAS mission.3.5.3.1 Awareness sensors3.5.3.2 Awareness data fusion3.5.3.3 Self-separation and collision avoidance declaration3.5.3.4 Self-separation and collision avoidance reaction3.6. Conclusion.3.7. References.Part II REGULATORY ISSUES AND HUMAN FACTORS.4. Regulations and Requirements, human factors aspects and situational awareness (by X. Prats, J. Ramirez, L. Delgado and P. Royo)4.1. Background Information.4.1.1. Flight rules.4.1.2. Classes of airspace.4.1.3. Types of UAS andtheir missions.4.1.3.1 Categorisation by weight4.1.3.2 Categorisation by flight performance4.1.3.3 UAS missions4.1.3.4 Operational behaviour4.1.3.5 Safety levels4.2. Existing Regulations and Standards.4.2.1. Current certification mechanisms for UAS.4.2.1.1 United States of America4.2.1.2 European Union4.2.1.3 Other countries (Canada, Australia)4.1.3.4 Operational behaviour4.2.2. Standardisation bodies and safety agencies.4.3. Sense and Avoid Requirements.4.3.1. General sense requirements.4.3.2. General avoidance requirements.4.3.3. Possible SAA requirements in function of the airspace calss.4.3.4. Possible SAA requirements in function of the flight altitude and visibility conditions4.3.5. Possible SAA requirements in function of the type of communications relay.4.3.5.1Line of sight communications4.3.5.2 Beyond line of sight communications4.3.6.Possible SAA Requirements in function of the automation level of the UAS.4.4.Human Factors and Situational Awareness Considerations.4.5. Conclusions.4.6. References.5. Human Factyors in UAS (by M. A. Cahillane, C. Baber and C. Morin)5.1. Introduction.5.2. Tele-operation of UAV.5.3. Integrating with Semi Autonomous Systems.5.4. Multi-modal Interaction with Unmanned Vehicles.5.4.1. Control of Multiple Unmanned Vehicles.5.4.2. Task Switching Ability.5.4.3. Attention Control and Unmanned Vehicles Tasks.5.4.4. Task Switching Ability.5.5. References.Part III SAA METHODOLOGIES.6. Sense and Avoid Concpets: Vehicle-based SAA Systems (Vehicle-to-vehicle) (by S. Kopriva, D. Sislak and M. Pechoucek)6.1.Introduction.6.2. Conflict Detection and Resolution Principles.6.2.1. Sensing.6.2.2. Trajectory prediction.6.2.3.Conflict detection.6.2.4. Conflict resolution.6.2.5. Evasion manoeuvres.6.3. Categorization of Conflict Detection and Resolution Approaches.6.3.1. Taxonomy.6.3.2. Rule-based models.6.3.3. Game theory methods.6.3.4. Field methods.6.3.5. Geometric methods.6.3.6. Numerical optimisation methods.6.3.7. Combined methods.6.3.8. Multi-agent methods.6.3.9. Other methods.6.4. References.7. UAV Conflict Detection and Resolution using Differential Geometry (by H.-S. Shin, A. Tsourdos and B. A. White)7.1. Introduction.7.2. Differential Geometry Kinematics.7.3. Conflict Detection.7.3.1. Collision kinematics.7.3.2. Conflict detection.7.4. Conflict Resolution Guidance: Approach I7.4.1. Resolution kinematics.7.5. Conflict Resolution Guidance: ApproachII7.5.1. Conflict resolution for constant speed.7.5.2. Heading and angle speed.7.6. CD&R Simulation.7.6.1. Simulation results: approach I7.6.2. Headingand angle speed.7.7. Conclusions.7.8. Appendix.7.9. References.8. Aircraft Separation Management using Common Infomration Network SAA (by R. Baumeister andG. Spence)8.1. Introduction.8.2. CIN Sense and Avoid Requirements.8.3. Automated Separation Management on a CIN.8.3.1. Elements of automated aircraft spearation.8.3.2. Grid-based separation automation.8.3.3. Genetic-based separation automation.8.3.4. Filed-based separation automation.8.4. €˜Smart Skies€™ Implementation.8.4.1. €˜Smart Skies€™ background.8.4.2. Flight test assets.8.4.3. Communication architecture.8.4.4. Messaging system.8.4.5. Automated separation implementation.8.4.6. Smart implementation summary.8.5. Example SAA on a CIN -Flight Test Results.8.6. Summary and Future Developments.8.7. References.PartIV SAA APPLICATIONS.9. AgentFly: Scalable, High-Fidelity Framework for Simulation, Planning and Collision Avoidance of Multiple UAVs (by D. Sislak, P. Volf, S. Kopriva and M. Pechourcek)9.1. Agent-based Architecture.9.1.1. UAV agents.9.1.2. Visio agents.9.2. Airplane Control Concept9.3. Flight Trajectory Planner.9.4. Collision Avoidance.9.4.1. Multi-layer collision avoidance architecture.9.4.2. Cooperative collision avoidance.9.4.2.1 Rule-based collision avoidance9.4.2.2 Iterative peer-to-peer collision avoidance9.4.2.3 Multi-party collision avoidance9.4.3. Non-cooperative collision avoidance.9.5. Team Cooperation.9.6. Scalable Simulation.9.7. Deployment of Fixed-wing UAV.9.8. References.10. See and Avoid using On-board Computer Vision (by J. Lai, J. Ford, L. Mejias, P. O€™Shea and R. Walker)10.1. Introduction.10.1.1. Background.10.1.2. Outline of the SAA problem..10.1.3. Collision course geometry.10.2. Literatrure Review..10.3. Visual-EO Airborne Collision Detection.10.4. Image Capture.10.4.1. Camera model10.5. Image Stabilisation.10.5.1. Image jitter.10.5.2. Jitter compensation techniques.10.5.2.1 Optical flow.10.5.2.2 Image projection correlation10.5.2.3 Inertial measurement10.6. Detection and tracking.10.6.1. Two-stage detection approach.10.6.1.1 Stage 1: Morphological image pre-processing10.6.2.2 Stage 2: Track-before-detect temporal filtering10.6.2.2.1 Hidden Markov model filtering.10.6.2.2.2 Ad hoc Viterbi-based filter10.6.2.2.3 Filter bank approach.10.6.2. Target tracking10.7. Target Dynamics and Avoidance Control10.7.1. Estimation of target bearing.10.7.2. Bearings-based avoidance control10.8. Hardware Technology and Platform Integration.10.8.1. Target/intruder platforms.10.8.1.1 Boomerang UAV10.8.1.1.1 System architecture10.8.1.2 Piloted Cessna 182 light aircraft10.8.2. Camera platforms.10.8.2.1 Flamingo UAV10.8.2.1.1 System architecture10.8.2.1.2 System configuration10.8.2.2 Piloted Cessna 182 light aircraft10.8.2.2.1 Basic system architecture10.8.2.2.2 Basic system configuration10.8.2.2.3 Vision sensor Pod architecture10.8.3. Sensor Pod.10.8.4. Real-time Image processing.10.9. Flight Testing.10.9.1. Test phase results.10.10. Future Work.10.11. Conclusions.10.12. References.11. Use of Low-cost Mobile radar Systems for Small UAV SAA (by M. Wilson)11.1. Introduction.11.2. The UAS OperatingEnvironment11.2.1. Airspace and Radio Carriage.11.2.2. See-and-Avoid.11.2.3. Midair collisions.11.3. Sense and Avoid and Collision Avoidance.11.3.1. A layered approach to avoiding collisions.11.3.2. Cooperative Aircraft11.3.2.1 Passive Systems11.3.2.2 Active Systems11.3.3. Non-Cooperative Aircraft11.3.3.1 Passive Systems11.3.2.2 Active Systems.11.3.4. On-board Systems.11.3.5. Ground-based Systems.11.3.6. Example Ground-based Sense and Avoid Systems.11.3.7. Conclusion.11.4. Smart Skies Project11.4.1. Introduction.11.4.2. Smart Skies Architecture.11.4.3. The Mobile Aircraft Tracking System..11.4.3.1 Mission.11.4.3.2 Architecture11.4.3.3 The MATS Radar System11.4.3.4 The MATS ADS-B Receiver11.4.3.5 The MATS Server11.4.3.6 VHF Radio11.4.4. The Airborne System Laboratory (ASL)11.4.5. The Flamingo UAS11.4.6. Helicopter UAS.11.4.7. Virtual Aircraft11.4.8. Automated Dynamic Airspace Controller (ADAC).11.4.9 Communication Links.11.4.10. Summary11.5. Flight Test Results.11.5.1. Radar Characterisation Experiments.11.5.1.1 Introduction11.5.1.2 Operating Environment - Watts BridgeCircular Flight Paths11.5.1.4 Diamond Flight Paths11.5.1.5 Conclusion.11.5.2. Sense and Avoid Experiments.11.5.2.1 Introduction.11.5.2.2 Speeds and Distances.11.5.2.3 Minimum Altitude of an Aircraft11.5.2.4 Intruder Scenario11.5.2.5 UnmannedAircraft Actions11.5.2.6 Results.11.5.2.7 Discussion11.5.2.8 Conclusion11.5.3. Automated Sense and Avoid.11.5.4. Dynamic Sense and Avoid Experiments.11.5.5. Tracking a variety of aircraft.11.5.5.1 Introduction11.5.5.2 Royal Flight Doctor11.5.5.3 Micro-light11.5.5.4 Tracking Unmanned Aircraf11.5.5.5 Conclusion11.5.5.6 Weather Monitoring11.5.5.3 Micro-light.11.6. Discussion.11.7. Summary.11.8. The Future.11.9. References.12. Epilogue.13. Glossary.14. Index.15. About the contributors.

  • ISBN: 978-1-119-96404-9
  • Editorial: John Wiley & Sons
  • Encuadernacion: Rústica
  • Páginas: 384
  • Fecha Publicación: 20/04/2012
  • Nº Volúmenes: 1
  • Idioma: Inglés