A short history of mathematical population dynamics

A short history of mathematical population dynamics

Bacaër, Nicolas

25,95 €(IVA inc.)

As Eugene Wigner stressed, mathematics has proven unreasonably effective in the physical sciences and their technological applications. The role of mathematics in the biological, medical and social sciences has been much more modest but has recently grown thanks to the simulation capacity offered by modern computers./p pThis book traces the history of population dynamics---a theoreticalsubject closely connected to genetics, ecology, epidemiology and demography---where mathematics has brought significant insights. It presents an overview of the genesis of several important themes: exponential growth, from Euler and Malthus to the Chinese one-child policy; the development of stochastic models,from Mendel's laws and the question of extinction of family names to percolation theory for the spread of epidemics, and chaotic populations, where determinism and randomness intertwine./p pThe reader of this book will see, from a different perspective, the problems that scientists face when governments ask for reliable predictions to help control epidemics (AIDS, SARS, swine flu), manage renewable resources (fishing quotas, spread of genetically modified organisms) or anticipate demographic evolutions such as aging./p " Presents interesting historical background information as well as mathematical analysis of select classical mathematical models in population biology Provides complementary reading for undergraduates and postgraduates studying mathematical biology Details the lives of mathematicians who have made major contributions to the fieldMathematical details are provided in clear-cut boxes, enabling readers to optfor a 'lighter' read over the more technical option INDICE: The Fibonacci sequence (1202).- Halley’s life table (1693).- Eulerand the geometric growth of populations (1748–1761).- Daniel Bernoulli, d’Alembert and the inoculation of smallpox (1760).- Malthus and the obstacles to geometric growth (1798).- Verhulst and the logistic equation (1838).- Bienaymé, Cournot and the extinction of family names (1845–1847).- Mendel and heredity (1865).- Galton, Watson and the extinction problem (1873–1875).- Lotka and stable population theory (1907–1911).- The Hardy–Weinberg law (1908).- Ross and malaria (1911).- Lotka, Volterra and the predator–prey system (1920–1926).- Fisher and natural selection (1922).- Yule and evolution (1924).- McKendrick and Kermack on epidemic modelling (1926–1927).- Haldane and mutations (1927).- Erlang and Steffensen on the extinction problem (1929–1933).- Wright and random genetic drift (1931).- The diffusion of genes (1937).- 21 The Leslie matrix (1945).- 22 Percolation and epidemics (1957).- 23 Game theory and evolution (1973).- 24 Chaotic populations (1974).- 25 China’s one-child policy (1980).- 26 Some contemporary problems.

  • ISBN: 978-0-85729-114-1
  • Editorial: Springer
  • Encuadernacion: Rústica
  • Páginas: 158
  • Fecha Publicación: 01/11/2010
  • Nº Volúmenes: 1
  • Idioma: Inglés