Quantum Mechanics: An Experimentalists Approach

Quantum Mechanics: An Experimentalists Approach

Commins, Eugene D.

75,78 €(IVA inc.)

Eugene D. Commins takes an experimentalist's approach to quantum mechanics, preferring to use concrete physical explanations over formal, abstract descriptions to address the needs and interests of a diverse group of students. Keeping physics at the foreground and explaining difficult concepts in straightforward language, Commins examines the many modern developments in quantum physics, including Bell's inequalities, locality, photon polarization correlations, the stability of matter, Casimir forces, geometric phases, Aharonov–Bohm and Aharonov–Casher effects, magnetic monopoles, neutrino oscillations, neutron interferometry, the Higgs mechanism, and the electroweak standard model. The text is self-contained, covering the necessary background on atomic and molecular structure in addition to the traditional topics. Developed from the author's well-regarded course notes for his popular first-year graduate course at the University of California, Berkeley, instruction is supported by over 160 challenging problems to illustrate concepts and provide students with ample opportunity to test their knowledge and understanding. INDICE: Preface; 1. Introduction; 2. Mathematical preliminaries; 3. The rules of quantum mechanics; 4. The connection between the fundamental rules and wave mechanics; 5. Further illustrations of the rules of quantum mechanics; 6. Further developments in one-dimensional wave mechanics; 7. The theory of angular momentum; 8. Wave mechanics in three dimensions: hydrogenic atoms; 9. Time-independent approximations for bound state problems; 10. Applications of static perturbation theory; 11. Identical particles; 12. Atomic structure; 13. Molecules; 14. The stability of matter; 15. Photons; 16. Interaction of non-relativistic charged particles and radiation; 17. Further topics in perturbation theory; 18. Scattering; 19. Special relativity and quantum mechanics: the Klein–Gordon equation; 20. The Dirac equation; 21. Interaction of a relativistic spin ½ particle with an external electromagnetic field; 22. The Dirac field; 23. Interaction between relativistic electrons, positrons, and photons; 24. The quantum mechanics of weak interactions; 25. The quantum measurement problem; Appendix A: useful inequalities for quantum mechanics; Appendix B: Bell's inequality; Appendix C: spin of the photon: vector spherical waves; Works cited; Bibliography; Index.

  • ISBN: 978-1-107-06399-0
  • Editorial: Cambridge University Press
  • Encuadernacion: Cartoné
  • Páginas: 720
  • Fecha Publicación: 08/09/2014
  • Nº Volúmenes: 1
  • Idioma: Inglés