Biological Nitrogen Fixation

Biological Nitrogen Fixation

de Bruijn, Frans J.

540,38 €(IVA inc.)

Biological Nitrogen Fixation  is a comprehensive 3 volume work bringing together both review and original research articles on key topics in nitrogen fixation. Chapters across all three volumes emphasize molecular techniques and advanced biochemical analysis approaches applicable to various aspects of biological nitrogen fixation, but each volume also has a unique focus: Volume I explores the chemistry and biochemistry of nitrogenases, nif gene regulation, the taxonomy, evolution, and genomics of nitrogen fixing organisms, as well as their physiology and metabolism.  Volume II covers the symbiotic interaction of nitrogen fixing organisms with their host plants, including nodulation and symbiotic nitrogen fixation. Volume III features chapters on the omics of nitrogen fixing organisms and host plants, nitrogen fixing cyanobacteria and archaea, nitrogen fixing plant growth promoting rhizobacteria and non–legumes, as well as field studies and nitrogen fixation in cereals. Covering the full breadth of current nitrogen fixation research and synthesizing it to point the way forward, Biological Nitrogen Fixation  will be a one–stop reference for microbial ecologists and environmental microbiologists as well as plant and agricultural researchers working on crop sustainability. INDICE: VOLUME I Chapter 1.  Introduction   Frans J. de Bruijn Section 1.  Focus Chapters Chapter 2.  Recent advances in the chemistry and biochemistry of nitrogenases.  William Newton  wenewton@vt.edu Chapter 3.  PII signal transduction proteins are ATPases whose activity is regulated by 2–oxoglutarate.  Mike Merrick  mike.merrick@bbsrc.ac.uk . Chapter 4.  Taxonomy and evolution of nitrogen–fixing organisms.  Kristina Lindstrom  Kristina.Lindstrom@helsinki.fi Chapter 5.  Evolution of Rhizobium nodulation; from nodule specific genes (nodulins) to recruitment of common processes.  Ton Bisseling  ton.bisseling@wur.nl Chapter 6     The contribution of biological nitrogen fixation towards a sustainable  future for planet earth.  Robert M. Boddey   bob@cnpab.embrapa.br Chapter  7      Nitrogen fixation in perspective: an overview of research and extension needs  Carroll Vance and Peter Graham  pgraham@soils.umn.edu Chapter 8.     Bioengineering nitrogen acquisition in rice: Can novel initiatives in rice genomics and physiology contribute to global food security?   Herbert Kronzucker  herbertk@utsc.utoronto.ca Section 2.      Chemistry and Biochemistry of Nitrogenases Chapter 9.   Biosynthesis of nitrogenase FeMoCo.  Markus Ribbe  mribbe@uci.edu Chapter 10.    Towards the elucidation of nitrogenase interactome in Azotobacter vinelandii.  Luis Rubio  luis.rubio@imdea.org Chapter 11.   Electron transfer in nitrogenase catalysis.  Lance Seefeldt  lance.seefeldt@usu.edu Chapter 12.   Mechanism of Mo–dependent nitrogenase  Dennis Dean  deandr@vr.edu Chapter 13.    Unification of reaction pathway and kinetic scheme for N2 reduction catalysed by nitrogenase.  Brian M. Hoffman   bmh@northwestern.edu Chapter 14.     Unraveling the molecular mechanisms of nitrogenase conformational protection against oxygen in diazotrophic bacteria.  Leticia MS Lery   llery@biof.ufrj.br Chapter 15.      Conserved aminoacid sequence features in the subunits of MoFe, VFe and FeFe nitrogenases.  Alexander Glazer  glazer@berkely.edu Section 3. Expression and Regulation of Nitrogen Fixation Genes and Nitrogenase. Chapter 16.   Analysis of nif gene derepression in Azotobacter vinelandii by quantitative real–time PCR;  Cesar Poza–Carrion, Luis Rubio   luis.rubio@imdea.org Chapter 17.   Regulatory networks in establishment of the Sinorhizobium meliloti–alfalfa root nodule symbiosis.  Anke Becker  anke.becker@synmikro.uni–marburg.de Chapter 18.    Regulation of nitrogen fixation by the associative  plant–growth promoting Azospirillum brasilense.  Fabio de Oliveira Pedrosa  fpedrosa@ufpr.br Chapter 19.  Nitrogen and molybdenum control of nitrogen fixation in the phototrophic bacterium Rhodobacter capsulatus.  Bernd Masepohl   bernd.masepohl@rub.de Chapter  20.  The interplay between DRAT, DRAG, PII proteins and the chromatophore membrane in the regulation of nitrogenase activity in Rhodospirillum rubrum. Stefan Nordlund.  stefan@dbb.su.se Chapter 21.    Crystal structure of the GlnZ–DraG complex reveals a different form of PII–target interactions.  Xiao–Dan Li  xiao.li@psi.ch Chapter 22.  Fe protein over–expression can enhance the nitrogenase activity of Azotobacter vinelandii.  Papri Nag  paprina2003@yahoo.com Section 4   Taxonomy and Evolution of Nitrogen Fixing Organisms Chapter 23.   An alternative path for the evolution of biological nitrogen fixation.  John Peters  john.peters@chemistry.montana.edu Chapter 24.   Evolution, diversity and ecology of bacteria– what do rhizobia tell us?  Peter Young   peter.young@york.ac.uk Chapter 25.   Experimental evolution of legume symbionts.  Catherine Masson–Boivin   Catherine.Masson@toulouse.inra.fr Chapter 26.   Nodulation of Mimosa and related legumes by beta–rhizobia: is plant taxonomy important?  Euan James   e.k.james@dundee.ac.uk Chapter 27.  Burkholderia species are ancient symbionts of legumes.  Peter Young  jpy1@york.ac.uk Chapter 28.  Poles apart: Nodulation in native legumes from the Southern and Northern hemisphere.  Janet Sprent   jisprent@btinternet.com Chapter 29.   Genetic diversity of Mimosa pudica rhizobial symbionts in soils of French Guyana:  investigating the origin and diversity of Burkholderia phymatum and other beta–rhizobia.  Lionel Moulin   lionel.moulin@ird.fr Chapter 30.    Phylogeny of nodulation and nitrogen–fixation genes in Bradyrhizobium: supporting evidence for the theory of monophyletic origin and spread and maintenance by both horizontal and vertical transfer.  Mariangela Hungria  mariangela.hungria@embrapa.br Chapter 31.   A global census of nitrogenase diversity.  Daniel Buckley  dhb28@cornell.edu Chapter 32.  Distribution of nitrogen fixation and nitrogenase–like sequences amongst microbial genomes.  Ray Dixon  ray.dixon@jic.ac.uk Section 5    Genomics of  Nitrogen Fixing Organisms. Chapter 33.     A LuxRI–family regulatory system controls excision and transfer of the Mesorhizobium loti strain R7A symbiosis island by activating expression of two conserved hypothetical genes.  Clive Ronson  clive.ronson@otago.ac.nz Chapter 34.    Genome transcriptional analysis and functional characterization of a nitrogen fixation island in the root–associated Pseudomonas stutzeri.  Lin Min   linmin57@vip.163.com Chapter  35          Natural genomic design in Sinorhizobium meliloti:  Novel genomic architectures.  Rafael Palacios  palacios@cifn.unam.mx Chapter 36.   The GEBA–root nodule bacteria community sequencing project.  Wayne Reeve   W.Reeve@murdoch.edu.au Chapter 37.   Genome of Herbaspirillum seropedicae strain SmR1, a specialized diazotrophic endophyte of tropical grasses.  Fabio Pedrosa   fpedrosa@ufpr.br Chapter 38.    Genomic sequencing of Herbaspirillum seopedicae, a clinical isolate, and comparison to Herbaspirillum serepedicae SmR1, a plant endophytic bacterium.  Hellison Faoro     faoro@ufpr.br Chapter  39         Genome sequence of the diazotrophic gram–positive Rhizobacterium Paenibacillus riograndensis SBR5T  Luciane Passaglia  lpassaglia@terra.com.br Chapter  40.    Genome sequence of “Candidatus Frankia datiscae” Dg1, the uncultured microsymbiont from nitrogen–fixing  root nodules of the dicot Datisca glomerata.  Katharina Pawlowski  pawlovski@botan.su.se Chapter  41.   Genome sequence of Azotobacter vinelandii, an obligate aerobe specialized to support diverse anaerobic metabolic processes.  Joao C. Setubal   setubal@vbi.vt.edu Chapter  42         Complete genome sequence of the N2–fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice.  Eric Tripplett  Derrick Fouts   dfouts @jcvi.org Chapter  43.    Complete genome sequence of the sugarcane nitrogen–fixing endophyte Gluconacetobacter diazotrophicus Pal5.  Paulo CG Ferreira   paulof@bioqmed.ufrj.br Chapter 44.     The genome sequence of the novel rhizobial species Microvirga lotononidis strain WSM3557.  Julie Ardley  j.ardley@murdoch.edu.au Chapter 45.    Genome sequence of the soybean symbiont Sinorhizobium fredii HH103.  Michael Gottfert  Michael.goettfert@tu–dresden.de Chapter 46.   Genome characteristics of facultatively symbiotic Frankia sp. Reflect host range and host plant biogeography.  Philippe Normand    philippe.normand@univ–lyon1.fr And David Benson  david.benson@uconn.edu Chapter 47.    Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments.  Florence Wisniewski–Dye  florence.wisniewski@univ–lyon1.fr Chapter 48.    Pangenome evolution in the symbiotic nitrogen fixer Sinorhizobium meliloti.  Marco Galardini  marco.galardini@unifi.it Chapter 49.   Complete genome of the mutualistic, N2–fixing grass endophyte Azoarcus sp. Strain BH72.  Barbara Reinhold–Hurek   breinhold@uni–bremen.de Chapter 50.    Complete genomic structure of the cultivated rice endophyte Azospirillum sp. B510.   Shusei Sato   ssato@kasuza.or.jp Chapter  51.   Get homologues:  A software package for comparative genomics and microbial pangenomics.  Pablo Vinuesa  vinuesa@ccg.unam.mx Section 6.   Physiology and Metabolism of Nitrogen Fixing Organisms Chapter 52.  Systems biology of bacterial nitrogen fixation:  High–throughput technology and its integrative description with constraint–based modelling.  Osbaldo Resendis–Antonio  resendis@ccg.unam.mx Chapter 53.  In silico insights into the symbiotic nitrogen fixation in Sinorhizobium meliloti via metabolic reconstruction.  Jing Wang  wangjing@psych.ac.cn Chapter 54.  Bacterial RuBisCo is required for efficient Bradyrhizobium/Aeschynomene symbiosis.  Benjamin Gourion  Benjamin.gourion@isv.cnrs–gif.fr Chapter 55.  Function, regulation and biogenesis of cytochrome oxidases in Bradyrhizobium japonicum.  Hauke Hennecke  hennecke@micro.biol.ethz.ch Chapter 56.   Bacterial outer membrane channel for divalent metal acquisition.  Mark O’Brian  mrobrian@buffalo.edu Chapter 57.    A single cell perspective on nitrogen fixation in the presence of ammonium.  Frank Schreiber   frank.schreiber@uni–tuebingen.de Chapter 58.    Glycerol utilization  by Rhizobium leguminosarum requires an ABC transporter  and affects competition for nodulation   Michael Hynes   hynes@ucalgary.ca Chapter 59.        Host–specific symbiotic requirement of BdeAB, a RegR–controlled RND–type efflux system in Bradyrhizobium japonicum.  Hans–Martin Fischer  fischerh@micro.biol.ethz.ch Chapter 60.   Symbiotic role of cAMP signalling in Sinorhizobium meliloti.  Jacques Batut  jacques.batut@toulouse.inra.fr Chapter 61.    Role of BacA in lipopolysaccharide synthesis, peptide transport and nodulation by Rhizobium sp strain NGR234.  Graham Walker    gwalker@mit.edu Chapter 62.   BacA is essential for bacteroid development in nodules of galegoid, but not phaseoloid, legumes.  Philip Poole   philip.poole@bbsrc.ac.uk Chapter 63.   Sinorhizobium meliloti requires a cobalamin–dependent ribonucleotide reductase for symbiosis with its plant host.  Graham Walker  gwalker@mit.edu Chapter 64.   Rhizobium sp. Strain  NGR234 posesses a remarkable number of secretion systems.  Wolfgang Streit  wolfgang.streit@uni–hamburg.de Chapter 65.   ppGpp in Sinorhizobium meliloti: biosynthesis in response to sudden nutritional downshifts and modulation of the transcriptome.  Anke Becker  anke.becker@synmikro.uni–marburg.de Chapter 66.   Regulation of respiration and the oxygen diffusion barrier in soybean protect nitrogen fixation from chilling–induced inhibition and shoots from premature senescence  Christine Foyer   christine.foyer@ncl.ac.uk Chapter 67.   Characterization and functional analysis of seven flagellin genes in Rhizobium leguminosarum bv. viciae. Characterization of R. leguminosarum flagellins.  Michael Hynes  hynes@ucalgary.ca Chapter 68.    The pts/ntr system globally regulates ATP–dependent transporters in Rhizobium leguminosarum.  Jurgen Prell  jprell@bio1.rwth–aachen.de VOLUME II Section 7. Nitrogen Fixing Organisms, the Plant Rhizosphere and Stress Tolerance. Chapter 69.   Adaptation of Rhizobium leguminosarum to pea, alfalfa and sugar beet rhizospheres investigated by comparative transcriptomics.  Philip Poole   Philip .poole@bbsrc.ac.uk . Chapter 70.    Casuarina root exudates alter the physiology, surface properties and plant infectivity of  Frankia sp. Strain CcI3.  Louis Tisa  louis.tisa@unh.edu Chapter 71.   Transcriptional analysis of responses to exudates reveal genes required for rhizosphere competence of the endophyte Azoarcus sp. Strain BH72 .  Barbara Reinhold–Hurek   breinhold@uni–bremen.de Chapter 72.      Differential transcriptomics responses of Burkholderia, Cupriavidus and Rhizobium symbionts when induced by Mimosa pudica exudates.  Agnieszka Klonowska  agnieszka.klonowska@ird.fr Chapter 73.     Environmental signals and regulatory pathways that influence exopolyssacharide production in rhizobia.  Monika Janczarek    mon.jan@poczta.umcs.lublin.pl Chapter 74.   Role of quorum sensing in the Sinorhizobium meliloti–Alfalfa symbiosis  Juan Gonzales  jgonzal@utdallas.edu Chapter 75.  Involvement of multiple loci in quorum quenching of autoinducer I molecules in the nitrogen–fixing symbiont Rhizobium (Sinorhizobium) sp. Strain NGR234.   Wolfgang Streit  wolfgang.streit@uni–hamburg.de Chapter 76.   Roles for flavonoids in symbiotic root–rhizosphere interactions.  Ulrike Mathesius  ulrike.mathesius@anu.edu.au Chapter 77.    Regulatory and DNA repair genes contribute to the dessication resistance of Sinorhizobium meliloti Rm1021.  Michael Kahn.  kahn@wsu.edu Chapter 78.    Molecular analysis of the role of heat shock sigma factors in the environmental fitness of Azospirillum brasilense.  Anil Tripathi  tripathianil@rediffmail.com Chapter 79.    The general stress response in alpha–rhizobia.  Claude Bruand   claude.bruand@toulouse.inra.fr Section 8 Physiology and Regulation of Nodulation Chapter 80.  Molecular analysis of legume nodule development and autoregulation.  Peter Gresshoff  p.gresshoff@uq.edu.au Chapter 81.  Mutants: The Rosetta stone of nodulation signalling.  Allan Downie  allan.downie@jic.ac.uk Chapter 82.   The root hair: A single cell model for systems biology.  Gary Stacey  staceyg@missouri.edu Chapter 83        Heart of endosymbioses:  Transcriptomics reveals a conserved genetic program among arbuscular mycorrhizal, actinorhizal and legume–rhizobial symbioses.  Laurent Laplaze  laurent.laplaze@ird.fr Chapter 84.   SYMRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankia bacteria.  Didier Bogusz  bogusz@mpl.ird.fr Chapter 85.  Lotus japonicus nodulates when it sees red.  Akihiro Suzuki,   azuki@cc.saga–u..ac.jp     Ann Hirsch  ahirsch@ucla.edu Chapter 86.    Aeschynomene evenia, a model plant for studying the molecular genetics of the Nod–independent Rhizobium–legume symbiosis.  Eric Giraud  eric.giraud@ird.fr Chapter 87.    Sesbania rostrata: a case study of natural variation in legume nodulation.  Marcelle Holsters  mahol@psb.vib–ugent.be Chapter 88.   Is phosphorus efficiency low for symbiotic nitrogen fixation?  Jean –Jacques Drevon   drevonjj@supagro.inra.fr Chapter 89.    Global changes in the transcript and metabolic profiles during symbiotic nitrogen fixation in phosphorus stressed common bean plants.  Georgina Hernandez  gina@ccg.unam.mx Chapter 90.  Translational legume biology to study the genetics, physiology, development and nodulation of the legume biofuel feedstock tree Pongamia pinnata.  Peter Gresshoff   p.gresshoff@uq.edu.au Chapter  91        The autoregulation gene SUNN mediates changes in root organ formation in response through nitrogen through alteration of shoot–to–root auxin transport.  Ulrike Mathesius  ulrike.mathesius@anu.edu.au Chapter  92        RAR:regulatory peptides that affect root nodule formation and lateral root initiation in Medicago truncatula.  Michael Djordjevic  Michael.Djordjevic@anu.edu.au Chapter  93      The role of micro–RNAs in regulating nodule development.  Martin Crespi  martin.crespi@isv.cnrs–gif.fr Chapter 94.   Nodule–specific cystein–rich peptides found in actinorhizal plant Datisca glomerata.  Katharina Pawlowski  pawlovski@botan.su.se Chapter 95.   Physiology of nitrogen assimilation in Datisca–Frankia root nodule symbiosis :  microsymbiont independence in a novel pattern of symbiotic partitioning.  Alison Berry  amberry@ucdavis.edu Chapter 96      Local and systemic N signalling are involved in Medicago truncatula preference for the most efficient Sinorhizobium symbiotic partners.  Gisèle Laguerre  gisele.laguerre@supagro.inra.fr Chapter 97.     A  Medicago truncatula tobacco–retrotransposon  (Tnt1)– insertion mutant collection with defects in nodule development and symbiotic nitrogen fixation  Michael Udvardi   mudvardi@noble.org Section 9  Recognition in Nodulation. Chapter 98.     Evolutionary origin of rhizobium Nod factor signalling.  Rene Geurts  rene.geurts@wur.nl Chapter 99.    Nod factor recognition  in Medicago truncatula . Jean Jacques Bono Chapter 100.     Nod factor receptors and ligand recognition in Lotus japonicus.  Jens Stougaard   stougaard@mb.au.dk Chapter 101.   Functional characterization of LysM receptor–like kinase genes in Lotus japonicus     Simona Radutoiu  sir@mb.au.dk Chapter 102       Role of apyrases in nodulation.  Gary Stacey  staceyg@missouri.edu Chapter 103.    Nuclear membranes control calcium signalling of legumes.  Giles Oldroyd  giles.oldroyd@bbsrc.ac.uk Chapter 104.    Signalling and communication in Actinorhizal symbiosis.  Claudine Franche  claudine.franche@ird.fr and Philippe Normand philippe.normand@uni–lyon1.fr Chapter 105.   Candidatus Frankia datiscae DG1, the actinobacterial microsymbiont of Datisca glomerata is phylogenetically basal to other Frankia strains and uses Nod factor–like compounds for the infection of its host plant.  Katharina Pawlowski    pawlovski@botan.su.se Chapter 106    The dynamics of receptor localization in Medicago truncatula   Sharon Long  srl@stanford.edu Section 10. Infection and nodule ontogeny. Chapter 107.    Invasion by invitation: Rhizobial infection in legumes.  Jeremy Murray   Jeremy.murray@bbsrc.ac.uk Chapter 108.     Ca2+ signalling and rhizobial infection thread development in Medicago truncatula.  David Barker  David.barker@.toulouse.inra.fr Chapter 109.    Nuclear–localized and deregulated calcium– and calmodulin–dependent protein kinase activates rhizobial and mycorrhizal responses in Lotus japonicus.  Makoto Hayashi  makotoh@affrc.go.jp Chapter 110.    Differential activation of CCAMK between root nodule and arbuscular mycorrhizal symbioses.  Yoshikazu  Shimod Chapter 111.    Lotus japonicus SymRK–14 uncouples the cortical and epidermal symbiotic program.  Krzysztof Szczyglowski  krzysztof.szczyglowski@agr.gc.ca Chapter 112.     Legume pectate lyase required for root infection by rhizobia.  Allan Downie  allan.downie@jic.ac.uk Chapter 113.     Roles of symbiotic signalling and cross–talk between the root epidermis and cortex for infection and nodule organogenesis in the Medicago truncatula/Sinorhizobium meliloti symbiosis.  Sandra Bensmihen  Sandra.bensmihen@toulouse.inra.fr Chapter 114.     Sulfenylated proteins in the Medicago truncatula–Sinorhizobium meliloti symbiosis.  Alain Puppo  puppo@unice.fr Chapter 115.    A C subunit of the plant nuclear factor NF–Y required for rhizobial infection and nodule development affects partner selection in the common bean–Rhizobium etli symbiosis.  Mario Aguilar  aguilar@biol.unlp.edu.ar Chapter 116.     A putative transporter is essential for integrating nutrient and hormone signalling with lateral root growth and nodule development in Medicago truncatula.  Rebecca Dickstein  beccad@unt.edu Chapter 117.    Transcriptional and post–transcriptional regulation of a NAC1 transcription factor in Medicago truncatula roots.  Sofie Goormachtig   sofie.goormachtig@psb.vib–ugent.be Chapter 118.   A MYB coiled coil type transcription factor interacts with NSP2 and is essential for nodulation in Lotus japonicus.  Zhongming Zhang, Zhenzhen Yang    zmzhang@mail.hzau.edu.cn Chapter 119.   Fine–tuned regulation of closely–related ERF transcription factors is associated with functional specialization during rhizobial infection.  Fernanda de Carvalo–Niebel Chapter 120.    Identification of Medicago truncatula genes required for rhizobial invasion and bacteroid differentiation.  Peter Kalo Chapter 121.    Multifacetted roles of nitric oxide in rhizobium–legume symbioses.  Eliane Meilhoc  eliane.meilhoc@toulouse.inra.fr Chapter 122.    Revisiting Medicago truncatula nodule development by RNA–seq and laser micro–dissection analysis.  Pascal Gamas  pascal.gamas@toulouse.inra.fr Chapter 123.    Profiling the symbiotic responses of Sinorhizobium fredii strain NGR234 with RNA–seq.  Xavier Perret  Xavier.perret@unige.ch Chapter 124.     Comparative transcriptome analysis reveals common and specific tags for root hair and crack–entry invasion in Sesbania rostrata.  Sofie Goormachtig and Marcelle Holsters  mahol@psb.vib–ugent.be Chapter 125.   Unravelling the role of symbiotic remorin proteins in nodulation.  Thomas Ott  Thomas.Ott@uni–muenchen.de Chapter 126.     Cytokinin: secret agent of symbiosis.  Florian Frugier   frugier@isv.cnrs–gif.fr Chapter 127.     Modeling a cortical auxin maximum for nodulation: different signatures of potential strategies.  Eva Elisabeth Deinum  e.deinum@amolf.nl Chapter 128.      Rhizobial cytokinins contribute to nodule organogenesis in Nod–Factor dependent and independent nodulation.  Nico Nouwen  nico.nouwen@ird.fr Section 11. Transitions from the Bacterial to the Bacteroid State. Chapter 129.      Bacteroid development in legume nodules:evolution of mutual benefit or of sacrificial victims.  Eva Kondorosi  eva.kondorosi@isv.cnrs–gif.fr Chapter 130.     Metabolic transitions  of Rhizobium from the rhizosphere to the bacteroid.  Philip Poole   philip.poole@bbsrc.ac.uk Chapter 131.     Differentiation of symbiotic cells and endosymbionts in Medicago truncatula nodulation are coupled to two transcriptome–switches.  Peter Mergeart  peter.mergeart@isv.cnrs–gif.fr Chapter 132.     A nodule–specific protein secretory pathway required for nitrogen–fixing symbiosis.  Sharon Long  SRL@stanford.edu Chapter 133.     Proteomic profile of the soybean symbiosome membrane.  V. Clarke, David Day Section 12  Nitrogen Fixation, Assimilation and Senescence in Nodules. Chapter 134.     What determines the efficiency of the N2–fixing Rhizobium–Legume symbiosis?  Philip Poole (long review) philip.poole@bbsrc.ac.uk Chapter 135.   Soybean ureide transporters play a critical role in nodule development, function and nitrogen export.  Mechthild Tegeder  tegeder@wsu.edu Chapter 136.   Interaction of cytosolic glutamine synthetase of soybean root nodules with the C–terminal domain of the symbiosome membrane Nodulin 26 aquaglyceroporin.  Daniel Roberts   drobert2@utk.edu Chapter 137.    Leghemoglobin green derivatives with nitrated hemes evidence production of highly reactive nitrogen species during aging of legume nodules  Manuel Becana  becana@eead.csic.es Chapter 138.    The role of 1–aminocyclopropane–1–carboxylase enzyme on leguminous nodule senescence.  Neung Teaumroong, Nantakorn Boonkerd  neung@sut.ac.th Chapter 139.    Dual involvement of a Medicago truncatula NAC transcription factor in root abiotic stress response and symbiotic nodule senescence.  Florian Frugier   frugier@isv.cnrs–gif.fr Volume III Section 13.  Microbial “Omics”. Chapter 140.    Microbial omics.  An annotated selection of World Wibe Web sites relevant to the topics in Environmental microbiology.  Lawrence P. Wackett   wacke003@umn.edu Chapter 141.    Metagenomic analysis of microsymbiont selection by the legume plant host.  Juan Imperial  juan.imperial@upm.es Chapter 142.    Rhizobial adaptation to hosts, a new facet in the legume root–nodule symbiosis.  Hauke Hennecke  hennecke@micro.biol.ethz.ch Chapter 143.        Expression profile analysis of oxygen response in the nitrogen–fixing endophyte Azoarcus sp. BH72 by genome–wide DNA microarray.  Abhijit Sarkar  asarkar@uni–bremen.de    Barbara Reinhold–Hurek  breinhold@uni–bremen.de Chapter 144.        Deep–sequencing analysis of small RNA and mRNA targets of the Sinorhizobium meliloti RNA chaperone Hfq.  José I. Jimenes–Zurdo  jijz@eez.csic.es   Nicolas Toro Chapter 145.      Transcriptional analysis of Pseudomonas  stutzeri A1501 identifies novel non–coding RNAs required for nitrogen fixation.  Yongliang Yan  yongliangyan@yahoo.com.cn   Min Lin Chapter 146.       Protein differences between rhizobial free–living and symbiotic lifestyles; The Center for Symbiotic System biology.  Svetlana Yurgel  syurgel@wsu.edu   Michael Kahn Chapter 147.   Proteomic profiling of Rhizobium tropici PRF81:  Identification of conserved and specific responses to heat stress.  Mariangela.hungria@embrapa.br Chapter 148.     An integrated proteomics and transcriptomics reference data set  provides new insights into the Bradyrhizobium japonicum bacteroid metabolism in soybean root nodules.  Gabriella Pessi   pessi@micro.biol.ethz.ch Chapter 149.   The Frankia alni symbiotic transcriptome.  Philippe  Normand  philippe.normand@uni–lyon1.fr Chapter 150.     A comprehensive survey of  Rhizobiales in soil using DNA pyrosequencing.  Ryan Jones  ryan.jones@sydney.edu.au Chapter 151.      Gene targeted metagenomics of diazotrophs from coastal saline soil in Gujaraat, India.  Bhanavath  Jha  bjha@csmcri.org Chapter 152.        Transcriptome analysis of Azospirillum lipoferum during its interaction with rice.  Benoit Drogue benoit.drogue@gmail.com Chapter 153       Transcript profiling of wheat (Triticum aestivum) roots colonized by Azospirillum   Rosali Wassum  wassum@ufpr.br Chapter 154.       Global transcriptional shift analysis of nitrogenase switch off by glutamate in Azospirillum amazonense strain CBAMC, isolated from sugar cane.  Stefan Schwab  sschwab@cnpab.embrapa.br Chapter 155.       Metagenomic analysis of microsymbiont selection by the legume plant host.  Juan Imperial  juan.imperial@upm.es Section 14  Plant “Omics” Chapter 156.     The Medicago truncatula genome.  Frederique Debellé Chapter 157.     Translating Medicago truncatula genomics to crop legumes.  Nevin Young  neviny@umn.edu Chapter 158.    A proteogenomic survey of the Medicago truncatula genome.  Michael Sussman   msussman@wisc.edu Chapter 159.     LegumeIP: an integrated database for comparative genomics and transcriptomics of model legumes.  Patrick Xuechun Zhao   pzhao@noble.org Chapter 160.     LegumeTFDB: an integrative database of Glycine max, Lotus japonicus and Medicago truncatula transcription factors.   Lam–son Phan  Tran   tran@psc.riken.jp Chapter 161.      Upgrading of information and material resources of Lotus japonicus.  Shusei Sato  ssato@kazusa.or.jp Chapter 162.     Functional genomics of symbiotic nitrogen fixation in legumes.  Michael Udvardi   mudvardi@noble.org Chapter 163.    New approaches in genomics:   Sequencing–powered QTL analysis, association mapping and reverse genetics in Lotus japonicus.  Stig Andersen  sua@mb.au.dk Chapter 164.     Phenotypic and genomic analyses of a fast neutron mutant population resource in soybean  Carroll Vance   carroll.vance@ars.usda.gov Chapter 165.     Leveraging proteomics and rapid phosphoproteomics to understand plant–microbe interactions   Jean Michel Ane  jane@wisc.edu Section 15    Cyanobacteria and Archaea Chapter 166.    Nitrogen fixation and hydrogen metabolism  in cyanobacteria.  Hermann Bothe     Hermann.Bothe@uni–koeln.de Chapter 167.     Nitrogen fixation by marine cyanobacteria.  Jonathan Zehr  zerj@ucsc.edu Chapter 168.    Nitrogen fixation and transfer in open ocean diatom–cyanobacterial symbioses.  Rachel Foster   rfoster@mpi–bremen.de Chapter 169.        Requirement of cell wall remodelling for cell–cell communication and cell differentiation in filamentous cyanobacteria of the order Nostocales.  Karl Forchhammer  karl.forchhammer@uni–tuebingen.de Chapter 170.       Identification of ten Anabaena sp. Genes that under aerobic conditions are required for growth on dinitrogen but not for growth on fixed nitrogen.  Peter Wolk  wolk@msu.edu Chapter 171.      Cyanobacterial sugar transporters required for infection in a Cyanobacterium–plant symbiosis.  Enrique Flores  eflores@ibvf.csic.es Chapter 172.        Emerging patterns of marine nitrogen fixation.  Jill Sohm  sohm@usc.edu Chapter 173.        Molecular characterization of potential nitrogen fixation by anaerobic methane–oxidizing Archaea in the methane seep sediments at the number 8 Kumano knoll in the Kumano basin, offshore of Japan.  Junichi Miyazaki   miazaki11@jamstec.go.jp Chapter 174.         Deep–sea Archaea fix and share nitrogen in methane–consuming microbial consortia.  Victoria Orphan   vorphan@gps.caltech.edu  Section 16 Diazotrophic Plant Growth Promoting Rhizobacteria and non–legumes. Chapter 175.        Plant–Growth–promoting rhizobacteria: Historical perspective.  Claudine Elmerich   elmerich@pasteur.fr Chapter  176            Use of nitrogen–fixing bacteria as biofertiliser for non–legumes:  Prospects and Challenges.  Aqbal Singh  sing.aqbal@gmail.com Chapter 177.        Plant associated Burkholderia species fix nitrogen, solubilise phosphate, promote plant growth and are phylogenetically distinct from disease–causing species.  Ann Hirsch   ahirsch@ucla.edu Chapter 178.      Plant growth promotion abilities and commercial applications of Azospirillum brasilense.  Yaacov Okon  okon@agri.huji.ac.il Chapter 179.      Maize/Azospirillum inoculation:  Which species can be recommended as PGPR in Brazil?   Veronica Reiss  veronica@cnpab.embrapa.br Chapter 180.       Role of Auxin signalling in the interaction of Arabidopsis with the plant growth–promoting bacterium  Azospirillum.  Stijn Spaepen stijn.spaepen@biw.kuleuven.be Chapter 181.       Herbaspirillum seropedicae attachment and endophytic colonization requires the interaction between bacterial lipopolysaccharide and three novel mayze lectins.  Rose Adele Monteiro  roseadele@gmail.com      Chapter 182.      Molecular characterisation of the diazotrophic bacterial community in uninoculated and inoculated field–grown sugarcane  (Saccharum sp).  Anton Hartmann  anton.hartmann@helmholz–muenchen.de and Luc Rouws  luc@cnpab.embrapa.br Chapter 183.       Biological nitrogen fixation (BNF) by C4 Poaceae:  What is needed to make it a reliable and predictable resource?  Euan James  euan.james@hutton.ac.uk Chapter 184.      Micro–managing sustainability:  Ecology of diazotrophs associated with Miscanthus.  Angela Kent  akent@illinois.edu Chapter 185.     Characterization of plant growth–promoting traits of free–living diazotrophic bacteria and their inoculation effects on growth and nitrogen uptake of crop plants    Tongmin Sa   tomsa@chungbuk.ac.kr Chapter 186.     Constitutive expression of the nifA gene activates associative nitrogen fixation of Enterobacter gergoviae 57–7, an opportunistic endophytic diazotroph.  J. Li  ljd@ibcas.ac.cn Section 17  Field Studies, Inoculum Preparation, Applications of Nod Factors. Chapter 187.      Use of remote sensing to assess the symbiotic performance of Rhizobium leguminosarum  var. viciae and field pea.  Felipe Burgos Chapter 188.       Desiccation induces viable but non–culturable cells in Sinorhizobium meliloti 1021.  Jan Vriezen   cvriezen8@gmail.com Chapter 189.       Making the most of high quality inoculants: survival of rhizobia during application to legume crops.  Rosalind Deaker rosalind.deaker@sydney.edu.au Chapter 190.          The multi–species inoculant for Brazilian sugarcane: The reasons for chosing the bacterial strains.  José Ivo Baldani  ibaldani@cnpab.embrapa.br Chapter 191.         Multi–locational field trials of a mixed–diazotroph inoculant on sugarcane in Brazil.  Robert M. Boddey   bob@cnpab.embrapa.br Chapter  192               Microbial inoculants to increase biological nitrogen fixation and nutrient use efficiency.  Didier Lesueur  didier.lesueur@cirad.fr Chapter  193            Developed microbial biofilms:  Novel biofertilizer technique for common bean (Phaseolus vulgaris L).  H.M. Herath  lasanthaherath@ymail.com Chapter   194           Phenotypic variation of rhizosphere bacteria (PGPR and diazotrophs) during cultivation or mass production in liquid medium.  Anton Hartmann  anton.hartmann@helmholz–muenchen.de   et al. Chapter 195.       A tale of two worlds:  Putting nitrogen fixation to work for smallholder farmers in Africa (N2Africa).  Ken Giller  ken.giller@wur.nl Chapter 196.       Trehalose accumulation in osmotically challenged rhizobia and its effect on dessication tolerance.  Andrea Casteriano, Rosalind Deaker  rosalind.deaker@sydney.edu.au Chapter 197.       Evaluation of elite commercial soybean varieties for N2 fixation and grain yield in South Africa.   Felix Dakora    dakoraf@tut.ac.za Chapter 198.        Breeding for biological nitrogen fixation in pulses.  Peter Kennedy    peter.kennedy@dpi.vic.gov.au Chapter 199.        LCO applications provide improved responses with legumes and non–legumes.  Stewart Smith  rsws@novozymes.com Section 18  Nitrogen Fixation and Cereals Chapter 200.       How close are we to nitrogen–fixing cereals?  Giles Oldroyd  giles.oldroyd@bbsrc.ac.uk Chapter 201.        Evolution of root endosymbiosis with bacteria: How novel are nodules?  Katharina Markmann  kama@mb.au.dk Chapter 202.         Environmental and economic impacts of biological N2 fixing cereal crops.  Perrin Beatty  pbeatty@ualberta.ca Chapter 203          Use of nitrogen–fixing bacteria as biofertiliser for non–legumes:  Prospects and Challenges.  Aqbal Singh  sing.aqbal@gmail.com Chapter 204.          Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca.  Christopher Voigt  cavoigt@gmail.com Chapter 205.        Conservation of legume–rhizobium symbiosis genes in a non–legume.  Keisuke Yokota; Makato Hayashi  makatoh@affrc.go.jp Chapter 206.         OsIPD3, an orthologue of the Medicago truncatula DMI3 interacting protein is required for mycorrhizal symbiosis in rice.  Hongyuan Zhu  hzhu@uky.edu Chapter 207.         A rice calcium– and calmodulin–dependent protein kinase restores nodulation to a legume mutant.  Charles Rosenberg  crosen@toulouse.inra.fr Chapter 208.       Metabolic engineering of rice with soybean isoflavone synthase for promoting nodulation gene expression in rhizobia.  Pallavolu Reddy   pmreddy@ccg.unam.mx Chapter 209.     Factors affecting endophytic colonization of Rice.  Barbara Reinhold–Hurek    breinhold@uni–bremen.de Chapter  210           Enhancement of rice production using endophytic strains of Rhizobium leguminosarum bv. trifolii in extensive field inoculation trials within the Egypt Nile delta.  Youssef Yanni  yanni244@yahoo.com Chapter  211       Prevalence of betaptoteobacterial sequences in nifH gene pools associated with roots of modern rice cultivars  Yahai Lu  yhlu@cau.edu.cn Chapter 212.  Expression of the nifH gene of a Herbaspirillum endophyte in wild rice species:daily rhythm during the light–dark cycle.  Kiwamu Minamisawa  kiwamu@ige.tohoku.ac.jp Chapter 213.     Occurrence and diversity of nitrogen–fixing Sphingomonas bacteria associated with rice plants grown in Brazil.  Jose Ivo Baldani   ibaldani@cnpab.embrapa.br Chapter 214.     Chemotaxis and biofilm formation during endophytic colonization of rice by Rhizobium sp. IRBG74.  Jean–Michel Ané   jane@wisc.edu Chapter  215           Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342.  Eric Triplett  ewt@ufl.edu Section 19 Concluding Chapters Chapter 216     In situ identification of plant–invasive bacteria with MALDI–TOF Mass spectrometry.  Xavier Perret  Xavier.perret@unibe.ch Chapter 217.   Speciation by symbiosis.  Seth Bordenstein  s.bordenstein@vanderbilt.edu Chapter 218.   The microbe–free plant: fact or artefact?  Martin Heil   mheil@ira.cinvestav..mx Chapter 219.   Modulation of host immunity by beneficial microbes.  Corné Pieterse;  C.M.J..Pieterse@uu.nl Chapter 220.  Conclusions and perspectives. Ray Dixon  ray.dixon@jic.ac.uk

  • ISBN: 978-1-118-63704-3
  • Editorial: Wiley–Blackwell
  • Encuadernacion: Cartoné
  • Páginas: 2250
  • Fecha Publicación: 08/05/2014
  • Nº Volúmenes: 1
  • Idioma: Inglés