Rare Earth and Transition Metal Doping of Semiconductor Materials: Synthesis, Magnetic Properties and Room Temperature Spintronics

Rare Earth and Transition Metal Doping of Semiconductor Materials: Synthesis, Magnetic Properties and Room Temperature Spintronics

Dierolf, Volkmar
Ferguson, Brian
Zavada, John M

197,60 €(IVA inc.)

Rare Earth and Transition Metal Doping of Semiconductor Material explores traditional semiconductor devices that are based on control of the electron's electric charge. This book looks at the semiconductor materials used for spintronics applications, in particular focusing on wide band-gap semiconductors doped with transition metals and rare earths. These materials are of particular commercial interest because their spin can be controlled at room temperature, a clear opposition to the most previous research on Gallium Arsenide, which allowed for control of spins at supercold temperatures. Part One of the book explains the theory of magnetism in semiconductors, while Part Two covers the growth of semiconductors for spintronics. Finally, Part Three looks at the characterization and properties of semiconductors for spintronics, with Part Four exploring the devices and the future direction of spintronics. Examines materials which are of commercial interest for producing smaller, faster, and more power-efficient computers and other devicesAnalyzes the theory behind magnetism in semiconductors and the growth of semiconductors for spintronicsDetails the properties of semiconductors for spintronics INDICE: Part One: Theory of magnetism in III-V semiconductors 1 Computational Nano-materials Design for Nano-Spintronics : Room Temperature Spintronics Applications 2 Electronic structure of magnetic impurities and defects in semiconductors: a guide to the theoretical models 3 Modeling magnetism in Rare Earth-doped Gallium Nitride bulk and nanoparticles Part Two: Magnetic semiconductors based on Rare Earth/Transition Metals 4 Prospects for Rare-Earth-Based DMS Alloys and Hybrid Magnetic Rare-Earth/Semiconductor Heterostructures 5 Magneto-Optical Properties of Er-doped GaAs 6 Gadolinium-doped Gallium-Nitride (GaN:Gd): synthesis routes, structure and magnetism 7 MOCVD Growth and Magnetic-Optical Characterization of Er-doped III-N Films 8 Growth of Eu-doped GaN and its Magneto-Optical Properties 9 Optical and Magnetic Characterization of III-N:Nd grown by MBE Part Three: Properties of magnetic semiconductors and spintronic devices 10 Growth of Gadolinium-doped Gallium Nitride (GaN:Gd) and Manganese-doped Gallium Nitride (GaN:Mn) and spin devices 11 Gadolinium-doped III-Nitride Diluted Magnetic Semiconductors for Spintronics Applications 12 Ferromagnetic Behavior in Transition Metal Doped III-N Semiconductors 13 Bipolar magnetic junction transistors for logic applications

  • ISBN: 978-0-08-100041-0
  • Editorial: Woodhead Publishing
  • Encuadernacion: Cartoné
  • Páginas: 510
  • Fecha Publicación: 01/02/2016
  • Nº Volúmenes: 1
  • Idioma: Inglés