Capillary Electrophoresis and Microchip Capillary Electrophoresis

Capillary Electrophoresis and Microchip Capillary Electrophoresis

García, Carlos D.
Chumbimuni–Torres, Karin Y.
Carrilho, Emanuel

104,21 €(IVA inc.)

Providing the most current information related to separations by capillary electrophoresis and microchip capillary electrophoresis, this innovative text provides a fundamental understanding of the CE and microchip–CE and their applications, along with troubleshooting hints. Emphasizing applications, such as protein characterization, Capillary Electrophoresis and Microchip Capillary Electrophoresis covers the most fundamental aspects of electrophoretically driven separations, specific problems linked to capillary electrophoresis at the microchip scale, including microfabrication techniques, separation modes, and detection systems, and concludes with a critical discussion related to applications of the technique. INDICE: PREFACE xvii ACKNOWLEDGMENTS xix CONTRIBUTORS xxi 1 Critical Evaluation of the Use of Surfactants in Capillary Electrophoresis 1 Jessica L. Felhofer, Karin Y. Chumbimuni–Torres, Maria F. Mora, Gabrielle G. Haby, and Carlos D. Garcý´a 1.1 Introduction 1 1.2 Surfactants for Wall Coatings 4 1.2.1 Controlling the Electroosmotic Flow 4 1.2.2 Preventing Adsorption to the Capillary 5 1.3 Surfactants as Buffer Additives 6 1.3.1 Micellar Electrokinetic Chromatography 6 1.3.2 Microemulsion Electrokinetic Chromatography 8 1.3.3 Nonaqueous Capillary Electrophoresis with Added Surfactants 9 1.4 Surfactants for Analyte Preconcentration 9 1.4.1 Sweeping 10 1.4.2 Transient Trapping 11 1.4.3 Analyte Focusing by Micelle Collapse 12 1.4.4 Micelle to Solvent Stacking 12 1.4.5 Combinations of Preconcentration Methods 12 1.4.6 Cloud Point Extraction 12 1.5 Surfactants and Detection in CE 14 1.5.1 Mass Spectrometry 14 1.5.2 Electrochemical Detection 15 1.6 Conclusions 16 References 17 2 Sample Stacking: A Versatile Approach for Analyte Enrichment in CE and Microchip–CE 23 Bruno Perlatti, Emanuel Carrilho, and Fernando Armani Aguiar 2.1 Introduction 23 2.2 Isotachophoresis 24 2.3 Chromatography–Based Sample Stacking 25 2.4 Methods Based on Electrophoretic Mobility and Velocity Manipulation (Electrophoretic Methods) 26 2.4.1 Field–Enhanced Sample Stacking (FESS) 27 2.4.2 Field–Enhanced Sample Injection (FESI) 27 2.4.3 Large–Volume Sample Stacking (LVSS) 28 2.4.4 Dynamic pH Junction 28 2.5 Sample Stacking in Pseudo–Stationary Phases 29 2.5.1 Field–Enhanced Sample Stacking 29 2.5.2 Hydrodynamic Injection Techniques 30 2.5.2.1 Normal Stacking Mode (NSM) 30 2.5.2.2 Reverse Electrode Polarity Stacking Mode (REPSM) 30 2.5.2.3 Stacking with Reverse Migrating Micelles (SRMM) 30 2.5.2.4 Stacking Using Reverse Migrating Micelles and a Water Plug (SRW) 31 2.5.2.5 High–Conductivity Sample Stacking (HCSS) 31 2.5.3 Electrokinetic Injection Techniques 32 2.5.3.1 Field–Enhanced Sample Injection (FESI–MEKC) 32 2.5.3.2 Field–Enhanced Sample Injection with Reverse Migrating Micelles (FESI–RMM) 32 2.5.4 Sweeping 32 2.5.5 Combined Techniques 33 2.5.5.1 Dynamic pH Junction: Sweeping 33 2.5.5.2 Selective Exhaustive Injection (SEI) 33 2.5.6 New Techniques 33 2.6 Stacking Techniques in Microchips 33 2.7 Concluding Remarks 36 References 37 3 Sampling and Quantitative Analysis in Capillary Electrophoresis 41 Petr Kuba´9n, Andrus Seiman, and Mihkel Kaljurand 3.1 Introduction 41 3.2 Injection Techniques in CE 42 3.2.1 Hydrodynamic Sample Injection 43 3.2.1.1 Principle 43 3.2.1.2 Advantages and Performance 44 3.2.1.3 Disadvantages 44 3.2.2 Electrokinetic Sample Injection 44 3.2.2.1 Principle 44 3.2.2.2 Advantages and Performance 45 3.2.2.3 Disadvantages 45 3.2.3 Bias–Free Electrokinetic Injection 45 3.2.4 Extraneous Sample Introduction Accompanying Injections in CE 46 3.2.5 Sample Stacking 48 3.2.5.1 Principle 48 3.2.5.2 Advantages and Performance 49 3.2.5.3 Disadvantages 50 3.2.6 Alternative Batch Sample Injection Techniques 50 3.2.6.1 Rotary–Type Injectors for CE 50 3.2.6.2 Hydrodynamic Sample Splitting as Injection Method for CE 51 3.2.6.3 Electrokinetic Sample Splitting as Injection Method for CE 52 3.2.6.4 Dual–Opposite End Injection in CE 52 3.3 Micromachined/Microchip Injection Devices 53 3.3.1 Droplet Sampler Based on Digital Microfluidics 53 3.3.2 Wire Loop Injection 54 3.4 Automated Flow Sample Injection and Hyphenated Systems 55 3.4.1 Introduction 55 3.4.2 Advantages and Performance 56 3.4.3 Disadvantages 57 3.5 Computerized Sampling and Data Analysis 57 3.6 Sampling in Portable CE Instrumentation 58 3.7 Quantitative Analysis in CE 59 3.7.1 Introduction 59 3.7.2 Quantitative Analysis with HD Injection 59 3.7.3 Quantitative Analysis with EK Injection 60 3.7.4 Validation of the Developed CE Methods 61 3.7.5 Computer Data Treatment in Quantitative Analysis 61 3.8 Conclusions 62 References 62 4 Practical Considerations for the Design and Implementation of High–Voltage Power Supplies for Capillary and Microchip Capillary Electrophoresis 67 Lucas Blanes, Wendell Karlos Tomazelli Coltro, Renata Mayumi Saito, Claudimir Lucio do Lago, Claude Roux, and Philip Doble 4.1 Introduction 67 4.1.1 High–Voltage Fundamentals 67 4.1.2 Electroosmotic Flow Control 68 4.1.3 Technical Aspects 70 4.1.4 Construction of Bipolar HVPS from Unipolar HVPS 70 4.1.5 Safety Considerations 71 4.1.6 HVPS Commercially Available 71 4.1.7 Practical Considerations 72 4.1.8 Alternative Sources of HV 72 4.1.9 HVPS Controllers for MCE 72 4.2 High–Voltage Measurement 73 4.3 Concluding Remarks 74 References 74 5 Artificial Neural Networks in Capillary Electrophoresis 77 Josef Havel, Eladia Marýa Pe?na–Mendez, and Alberto Rojas–Hernandez 5.1 Introduction 77 5.2 Optimization in CE: From Single Variable Approach Toward Artificial Neural Networks 77 5.2.1 Limitations of “Traditional” Single Variable Approach 79 5.2.2 Multivariate Approach with Experimental Design and Response Surface Modeling 79 5.2.2.1 Experimental Design 79 5.2.2.2 Response Surface Modeling 80 5.3 Artificial Neural Networks in Electromigration Methods 81 5.3.1 Introduction—Basic Principles of ANN 81 5.3.2 Optimization Using a Combination of ED and ANN 82 5.3.2.1 Testing of ED–ANN Algorithm 83 5.3.2.2 Practical Applications of ED–ANN 83 5.3.3 Quantitative CE Analysis and Determination from Overlapped Peaks 84 5.3.3.1 Evaluation of Calibration Plots in CE Using ANN to Increase Precision of Analysis 84 5.3.3.2 ANN in Quantitative CE Analysis from Overlapped Peaks 86 5.3.4 ANN in CEC and MEKC 86 5.3.5 ANN for Peptides Modeling 88 5.3.6 Classification and Fingerprinting 88 5.3.7 Other Applications 90 5.4 Conclusions 90 Acknowledgments 91 References 91 6 Improving the Separation in Microchip Electrophoresis by Surface Modification 95 M. Teresa Fernandez–Abedul, Isabel Alvarez–Martos, Francisco Javier Garcýa Alonso, and Agustýn Costa–Garcýa 6.1 Introduction 95 6.2 Strategies for Improving Separation 96 6.2.1 Selection of an Adequate Technique: ME 96 6.2.2 Microchannel Design 96 6.2.3 Selection of an Appropriate ME Material 96 6.2.4 Optimization of the Working Conditions 97 6.2.5 Surface Modification 97 6.2.5.1 Surface Micro– and Nanostructuring 98 6.2.5.2 Employment of Energy Sources 99 6.2.5.3 Chemical Surface Modification 99 6.3 Chemical Modifiers 102 6.3.1 Surfactants 104 6.3.2 Ionic Liquids 105 6.3.3 Nanoparticles 108 6.3.4 Polymers 110 6.4 Conclusions 119 Acknowledgments 120 References 120 7 Capillary Electrophoretic Reactor and Microchip Capillary Electrophoretic Reactor: Dissociation Kinetic Analysis Method for “Complexes” Using Capillary Electrophoretic Separation Process 127 Toru Takahashi and Nobuhiko Iki 7.1 Introduction 127 7.2 Basic Concept of CER 128 7.3 Dissociation Kinetic Analysis of Metal Complexes Using a CER 129 7.3.1 Determination of the Rate Constants of Dissociation of 1:2 Complexes of Al3þ and Ga3þ with an Azo Dye Ligand 2,20–Dihydroxyazobenzene–5,50–Disulfonate in a CER 130 7.4 Expanding the Scope of the CER to Measurements of Fast Dissociation Kinetics with a Half–Life from Seconds to Dozens of Seconds: Dissociation Kinetic Analysis of Metal Complexes Using a Microchip Capillary Electrophoretic Reactor (mCER) 133 7.5 Expanding the Scope of the CER to the Measurement of Slow Dissociation Kinetics with a Half–Life of Hours 135 7.5.1 Principle of LS–CER 135 7.5.2 Application of LS–CER to the Ti(IV)–Catechin Complex 136 7.5.3 Application of LS–CER to the Ti(IV)–Tiron Complex 138 7.6 Expanding the Scope of CER to Measurement of the Dissociation Kinetics of Biomolecular Complexes 139 7.6.1 Dissociation Kinetic Analysis of [SSB–ssDNA] Using CER 139 7.7 Conclusions 142 References 142 8 Capacitively Coupled Contactless Conductivity Detection (C4D) Applied to Capillary Electrophoresis (CE) and Microchip Electrophoresis (MCE) 145 Jose Alberto Fracassi da Silva, Claudimir Lucio do Lago, Dosil Pereira de Jesus, and Wendell Karlos Tomazelli Coltro 8.1 Introduction 145 8.2 Theory of C4D 145 8.2.1 Basic Principles of C4D 145 8.2.2 Simulation 146 8.2.3 Basic Equation for Sensitivity 147 8.2.4 Equivalent Circuit of a CE–C4D System 147 8.2.5 Practical Guidelines 148 8.3 C4D Applied to Capillary Electrophoresis 148 8.3.1 Instrumental Aspects in CE 149 8.3.2 Coupling C4D with UV–Vis Photometric Detectors in CE 149 8.3.3 Fundamental Studies in Capillary Electrophoresis Using C4D 149 8.3.4 Fundamental Studies on C4D 149 8.3.5 Applications 150 8.4 C4D Applied to Microchip Capillary Electrophoresis 151 8.4.1 Geometry of the Detection Electrodes 151 8.4.1.1 Embedded Electrodes 151 8.4.1.2 Attached Electrodes 153 8.4.1.3 External Electrodes 153 8.4.2 Applications 154 8.4.2.1 Bioanalytical Applications 154 8.4.2.2 On–Chip Enzymatic Reactions 155 8.4.2.3 Food Analysis 155 8.4.2.4 Explosives and Chemical Warfare Agents 155 8.4.2.5 Other Applications 156 8.5 Concluding Remarks 156 Acknowledgments 157 References 157 9 Capillary Electrophoresis with Electrochemical Detection 161 Blanaid White 9.1 Principles of Electrochemical Detection 161 9.1.1 Amperometric Detection 161 9.1.2 Potentiometric Detection 162 9.1.3 Conductivity Detection 162 9.2 Interfacing Amperometric Detection to Capillary Electrophoresis 163 9.2.1 Off–Column Detection 163 9.2.2 End–Column Detection 164 9.2.3 Use of Multiple Detection Electrodes 165 9.2.4 Pulsed Amperometric Detection 166 9.2.5 Nonaqueous EC Detection 166 9.2.6 Electrode Material 166 9.2.7 Dual Conductivity and Amperometric Detection 167 9.3 Interfacing Electrochemical Detection to Microfluidic Capillary Electrophoresis 168 9.3.1 End–Column Detection 168 9.3.2 Pulsed Amperometric Detection 169 9.3.3 Off–Channel Detection 169 9.3.4 Electrode Material 170 9.3.5 Portable CE and MCE Systems 170 9.3.6 Applications of CE–MCE with AD 171 9.3.7 Future Directions for CE–MCE with EC Detection 173 References 173 10 Overcoming Challenges in Using Microchip Electrophoresis for Extended Monitoring Applications 177 Scott D. Noblitt and Charles S. Henry 10.1 Introduction 177 10.2 Background Electrolyte (BGE) Longevity 179 10.3 Achieving Rapid Sequential Injections 186 10.4 Robust Quantitation 192 10.5 Conclusions 197 References 198 11 Distinction of Coexisting Protein Conformations by Capillary Electrophoresis 201 Hanno Stutz 11.1 Introduction 201 11.1.1 Theoretical Aspects of in vivo Protein Folding 202 11.2 Protein Misfolding and Induction of Unfolding 203 11.3 Conformational Pathologies 204 11.4 Distinction Between Conformations 205 11.5 Relevance of Conformations for Biotechnological Products 206 11.6 Conformational Elucidation—An Overview of Alternative Methods to CE 206 11.7 HPLC in Conformational Distinction 207 11.7.1 Intact Proteins 207 11.7.1.1 Reversed–Phase (RP)–HPLC 207 11.7.1.2 Size Exclusion (SEC)–HPLC 208 11.7.1.3 Ion–Exchange–HPLC 208 11.7.2 HPLC with Detectors Sensitive for Conformations and Aggregates 208 11.7.3 Peptides as Model Compounds for Hydrophobic Stationary Phases in HPLC 208 11.8 Capillary Electrophoresis (CE) in Conformational Separations 209 11.8.1 Fundamental Aspects and Survey of Pitfalls 209 11.8.2 Electrophoretic Mobility of Proteins 210 11.8.3 Peak Profiles and Derivable Thermodynamic Aspects of Protein Re–/Unfolding 211 11.8.4 Dipeptides as a Case Study for Isomerization 213 11.8.5 Denaturation Factors and Strategies Applied in CE 214 11.8.5.1 Separation Electrolyte, Injection Solution, and Sample Storage 215 11.8.5.2 Denaturation by Urea, Dithiothreitol, and GdmCl 215 11.8.5.3 Effects of pH and Organic Solvents 216 11.8.5.4 Temperature 216 11.8.5.5 Electrical Field 218 11.8.5.6 Detergents 218 11.8.5.7 Ligands and Ions—Case Studies on Potential Amyloidogenic b2m 221 11.8.6 b–Amyloid Peptides 222 11.8.6.1 Prions 223 11.9 Comparison Between CE and HPLC 223 11.10 Conclusive Discussion and Method Evaluation 223 11.10.1 General Aspects 223 11.10.2 HPLC 224 11.10.3 CE 224 References 225 12 Capillary Electromigration Techniques for the Analysis of Drugs and Metabolites in Biological Matrices: A Critical Appraisal 229 Cristiane Masetto de Gaitani, Anderson Rodrigo Moraes de Oliveira, and Pierina Sueli Bonato 12.1 Introduction 229 12.2 Strategies to Obtain Reliable Capillary Electromigration Methods for the Bioanalysis of Drugs and Metabolites 230 12.2.1 Selectivity and Detectability 230 12.2.1.1 Efficiency 232 12.2.1.2 Sample Preparation 233 12.2.1.3 Detectors 235 12.2.2 Repeatability 236 12.3 Selected Applications of Capillary Electromigration Techniques in Bioanalysis 238 12.3.1 Pharmacokinetics and Metabolism Studies 238 12.3.2 Enantioselective Analysis of Drugs and Metabolites 240 12.3.3 Biopharmaceuticals or Biotechnology–Derived Pharmaceuticals 240 12.3.4 Therapeutic Drug Monitoring 241 12.3.5 Clinical and Forensic Toxicology 242 12.4 Concluding Remarks 243 References 243 13 Capillary Electrophoresis and Multicolor Fluorescent DNA Analysis in an Optofluidic Chip 247 Chaitanya Dongre, Hugo J.W.M. Hoekstra, and Markus Pollnau 13.1 Introduction 247 13.2 Optofluidic Integration in an Electrophoretic Microchip 248 13.2.1 Sample Fabrication 248 13.2.2 Optofluidic Characterization 248 13.3 Fluorescence Monitoring of On–Chip DNA Separation 249 13.3.1 Experimental Materials and Methods 249 13.3.2 Experimental Results and Analysis 250 13.4 Toward Ultrasensitive Fluorescence Detection 253 13.4.1 Optimization of the Experimental Setup 253 13.4.2 All–Numerical Postprocessed Noise Filtering 253 13.5 Multicolor Fluorescent DNA Analysis 255 13.5.1 Dual–Point, Dual–Wavelength Fluorescence Monitoring 256 13.5.2 Modulation–Frequency Encoded Multiwavelength Fluorescence Sensing 259 13.5.3 Application to Multiplex Ligation–Dependent Probe Amplification 260 13.6 Conclusions and Outlook 263 Acknowledgments 264 References 264 14 Capillary Electrophoresis of Intact Unfractionated Heparin and Related Impurities 267 Robert Weinberger 14.1 Introduction 267 14.2 Capillary Electrophoresis and Heparin 269 14.3 Method Development in Capillary Electrophoresis 269 14.4 Common Impurities Found in Heparin 272 14.5 The United States Pharmacoepia and CE of Heparin 273 14.6 Interlaboratory Collaborative Study 274 14.7 Conclusions 275 References 275 15 Microchip Capillary Electrophoresis for In Situ Planetary Exploration 277 Peter A. Willis and Amanda M. Stockton 15.1 Introduction 277 15.2 Instrument Design 279 15.3 Instrumentation External to the Microdevice 280 15.4 Microdevice Basics 282 15.4.1 All–Glass Devices for Microchip Capillary Electrophoresis 282 15.4.2 Three–Layer Hybrid Substrate Glass–PDMS Devices for Fluidic Manipulation 284 15.4.3 Integrating Fluidic Manipulation with Electrophoresis 285 15.5 Microdevices and their Applications 285 15.5.1 Microdevices with Bus–Valve Control of Microfluidic Manipulation 285 15.5.2 Automaton Devices for Programmable Microfluidic Manipulation 288 15.6 Conclusions 289 Acknowledgments 290 References 290 16 Rapid Analysis of Charge Heterogeneity of Monoclonal Antibodies by Capillary Zone Electrophoresis and Imaged Capillary Isoelectric Focusing 293 Yan He, Jim Mo, Xiaoping He, and Margaret Ruesch 16.1 Introduction 293 16.2 Capillary Zone Electrophoresis 295 16.2.1 Separation and Detection Strategy 295 16.2.1.1 Capillary Construction 295 16.2.1.2 Buffer Composition 295 16.2.1.3 Separation Voltage and Field Strength 297 16.2.1.4 Detection 297 16.2.2 Applications 297 16.3 Imaged Capillary Isoelectric Focusing 299 16.3.1 Method Development and Optimization 299 16.3.1.1 Carrier Ampholyte 300 16.3.1.2 Additives 300 16.3.1.3 Focusing Time and Voltage 300 16.3.1.4 Salt Concentration 303 16.3.1.5 Protein Concentration 303 16.3.2 iCE Method Validation 303 16.3.3 Applications 304 16.3.3.1 Cell Line Development Support 304 16.3.3.2 Formulation Screening 304 16.3.3.3 Characterization of Acidic Species 305 16.4 Summary 306 References 307 17 Application of Capillary Electrophoresis for High–Throughput Screening of Drug Metabolism 309 Roman 9Remý´nek, Jochen Pauwels, Xu Wang, Jos Hoogmartens, Zden9ek Glatz, and Ann Van Schepdael 17.1 Introduction 309 17.2 Sample Deproteinization 310 17.3 On–line Preconcentration 311 17.4 Method Development 312 17.4.1 Dynamic Coating of Inner Capillary Wall 312 17.4.2 Short–End Injection 313 17.4.3 Strong Rinsing Procedure 313 17.4.4 Optimized Method 313 17.5 Method Validation 314 17.6 Method Applications 315 17.6.1 Drug Stability Screening 315 17.6.2 Kinetic Study 316 17.7 Conclusions 316 Acknowledgments 317 References 317 18 Electrokinetic Transport of Microparticles in the Microfluidic Enclosure Domain 319 Qian Liang, Chun Yang, and Jianmin Miao 18.1 Introduction 319 18.2 Numerical Model 320 18.2.1 Problem Description 320 18.2.2 Mathematical Model 320 18.3 Numerical Simulation 322 18.4 Results and Discussion 322 18.4.1 Particle Transport in the Bulk Flow 322 18.4.1.1 The Particle Velocity in the Confined Domain 322 18.4.1.2 The Trajectory of Particle Transport within the Confined Domain 323 18.4.1.3 The Effect of Sidewall Zeta Potential on the Particle Motion 324 18.4.2 Particle Transport Near the Bottom Surface 325 18.4.2.1 The Effect of the EDLThickness on the Near Wall Motion of the Particle 325 18.4.2.2 The Effect of Surface Charge on the Near Wall Transport of the Particle 325 18.5 Model Application 325 18.6 Conclusions 326 References 326 19 Integration of Nanomaterials in Capillary and Microchip Electrophoresis as a Flexible Tool 327 Germa´n A. Messina, Roberto A. Olsina, and Patricia W. Stege 19.1 Introduction 327 19.1.1 Historical Overview of Nanotechnology 327 19.1.2 Nanomaterials 329 19.1.2.1 Carbon–Based Nanomaterials 329 19.1.2.2 Metal–Based Nanomaterials 329 19.1.2.3 Dendrimers 331 19.1.2.4 Composites 331 19.2 Nanomaterials in Analytical Chemistry 332 19.3 Nanoparticles in Capillary Electrophoresis 333 19.3.1 Nanoparticles in Capillary Electrochromatography 334 19.3.1.1 Organic Nanoparticles 334 19.3.1.2 Inorganic Particles 338 19.3.2 Nanoparticles in Electrokinetic Chromatography 342 19.3.2.1 Organic Nanoparticles 343 19.3.2.2 Inorganic Particles 347 19.3.3 Nanoparticles in Microchip Electrochromatography 349 19.4 Conclusions 352 References 353 20 Microchip Capillary Electrophoresis to Study the Binding of Ligands to Teicoplanin Derivatized on Magnetic Beads 359 Toni Ann Riveros, Roger Lo, Xiaojun Liu, Marisol Salgado, Hector Carmona, and Frank A. Gomez 20.1 Introduction 359 20.2 Experimental Section 359 20.2.1 Materials and Methods 359 20.2.1.1 Equipment and Fabrication of the Microchips 360 20.2.1.2 Surface Coating 360 20.2.1.3 Teic Immobilization on Magnetic Microbeads 360 20.2.2 Procedures 360 20.2.2.1 FAMCE Studies 360 20.2.2.2 MFAC Studies 361 20.3 Results and Discussion 361 20.3.1 FAMCE Studies 361 20.3.1.1 Nonspecific Adsorption Resistance 361 20.3.1.2 The Binding of DA3 to Teic–Beads 362 20.3.2 MFAC Studies 363 20.4 Conclusions 364 Acknowledgments 365 References 365 21 Glycomic Profiling Through Capillary Electrophoresis and Microchip Capillary Electrophoresis 367 Yehia Mechref 21.1 Introduction 367 21.1.1 Release of N–Glycans from Glycoproteins 368 21.1.1.1 Chemical Release 368 21.1.1.2 Enzymatic Release 368 21.1.2 Release of O–Glycans from Glycoproteins 368 21.1.2.1 Chemical Release 368 21.1.2.2 Enzymatic Release 369 21.2 General Considerations of Capillary Electrophoresis and Microchip Capillary Electrophoresis of Glycans 369 21.2.1 Capillary Electrophoresis–Laser–Induced Fluorescence (CE–LIF) Analysis of Glycans 369 21.2.2 Interfacing Capillary Electrophoresis and Capillary Electrochromatography to Mass Spectrometry 372 21.2.2.1 ESI Interfaces for Capillary Electrophoresis 372 21.2.2.2 Sheathless–Flow Interface 372 21.2.2.3 Sheath–Flow Interface 373 21.2.2.4 Liquid Junction Interface 373 21.2.2.5 MALDI Interfaces for Capillary Electrophoresis 373 21.2.2.6 CE–MS Analysis of Glycans 374 21.2.2.7 Glycomic Analysis by CEC–MS 376 21.3 Microchip Capillary Electrophoresis 377 21.4 Conclusions 380 References 381 INDEX 385

  • ISBN: 978-0-470-57217-7
  • Editorial: Wiley–Blackwell
  • Encuadernacion: Cartoné
  • Páginas: 416
  • Fecha Publicación: 12/04/2013
  • Nº Volúmenes: 1
  • Idioma: Inglés