Moonlighting Proteins: Novel Virulence Factors in Bacterial Infections

Moonlighting Proteins: Novel Virulence Factors in Bacterial Infections

Henderson, Brian

169,73 €(IVA inc.)

INDICE: List of Contributors xv .Preface xix .About the Author xxiii .Part I Overview of Protein Moonlighting 1 .1 What is Protein Moonlighting and Why is it Important? 3Constance Jeffery .1.1 What is Protein Moonlighting? 3 .1.2 Why is Moonlighting Important? 5 .1.3 Current questions 11 .1.4 Conclusions 13 .References 13 .2 Exploring Structure Function Relationships in Moonlighting Proteins 21Sayoni Das, Ishita Khan, Daisuke Kihara, and Christine Orengo .2.1 Introduction 21 .2.2 Multiple Facets of Protein Function 22 .2.3 The Protein Structure Function Paradigm 23 .2.4 Computational Approaches for Identifying Moonlighting Proteins 25 .2.5 Classification of Moonlighting Proteins 26 .2.6 Conclusions 37 .References 39 .Part II Proteins Moonlighting in Prokarya 45 .3 Overview of Protein Moonlighting in Bacterial Virulence 47Brian Henderson .3.1 Introduction 47 .3.2 The Meaning of Bacterial Virulence and Virulence Factors 47 .3.3 Affinity as a Measure of the Biological Importance of Proteins 49 .3.4 Moonlighting Bacterial Virulence Proteins 50 .3.5 Bacterial Moonlighting Proteins Conclusively Shown to be Virulence Factors 64 .3.6 Eukaryotic Moonlighting Proteins That Aid in Bacterial Virulence 66 .3.7 Conclusions 67 .References 68 .4 Moonlighting Proteins as Cross ]Reactive Auto ]Antigens 81Willem van Eden .4.1 Autoimmunity and Conservation 81 .4.2 Immunogenicity of Conserved Proteins 82 .4.3 HSP Co ]induction, Food, Microbiota, and T Regulations 84 .4.4 The Contribution of Moonlighting Virulence Factors to Immunological Tolerance 87 .References 88 .Part III Proteins Moonlighting in Bacterial Virulence 93 .Part 3.1 Chaperonins: A Family of Proteins with Widespread Virulence Properties 95 .5 Chaperonin 60 Paralogs in Mycobacterium tuberculosis and Tubercle Formation 97Brian Henderson .5.1 Introduction 97 .5.2 Tuberculosis and the Tuberculoid Granuloma 97 .5.3 Mycobacterial Factors Responsible for Granuloma Formation 98 .5.4 Mycobacterium tuberculosis Chaperonin 60 Proteins, Macrophage Function, and Granuloma Formation 100 .5.5 Conclusions 106 .References 106 .6 Legionella pneumophila Chaperonin 60, an Extra ] and Intra ]Cellular Moonlighting Virulence ]Related Factor 111Karla N. Valenzuela ]Valderas, Angela L. Riveroll, Peter Robertson, Lois E. Murray, and Rafael A. Garduño .6.1 Background 111 .6.2 HtpB is an Essential Chaperonin with Protein ]folding Activity 112 .6.3 Experimental Approaches to Elucidate the Functional Mechanisms of HtpB 112 .6.4 Secretion Mechanisms Potentially Responsible for Transporting HtpB to Extracytoplasmic Locations 120 .6.5 Identifying Functionally Important Amino Acid Positions in HtpB 124 .6.6 Functional Evolution of HtpB 126 .6.7 Concluding Remarks 127 .References 129 .Part 3.2 Peptidylprolyl Isomerases, Bacterial Virulence, and Targets for Therapy 135 .7 An Overview of Peptidylprolyl Isomerases (PPIs) in Bacterial Virulence 137Brian Henderson .7.1 Introduction 137 .7.2 Proline and PPIs 137 .7.3 Host PPIs and Responses to Bacteria and Bacterial Toxins 138 .7.4 Bacterial PPIs as Virulence Factors 138 .7.5 Other Bacterial PPIs Involved in Virulence 140 .7.6 Conclusions 142 .References 142 .Part 3.3 Glyceraldehyde 3 ]Phosphate Dehydrogenase (GAPDH): A Multifunctional Virulence Factor 147 .8 GAPDH: A Multifunctional Moonlighting Protein in Eukaryotes and Prokaryotes 149Michael A. Sirover .8.1 Introduction 149 .8.2 GAPDH Membrane Function and Bacterial Virulence 150 .8.3 Role of Nitric Oxide in GAPDH Bacterial Virulence 153 .8.4 GAPDH Control of Gene Expression and Bacterial Virulence 158 .8.5 Discussion 160 .Acknowledgements 162 .References 162 .9 Streptococcus pyogenes GAPDH: A Cell ]Surface Major Virulence Determinant 169Vijay Pancholi .9.1 Introduction and Early Discovery 169 .9.2 GAS GAPDH: A Major Surface Protein with Multiple Binding Activities 170 .9.3 AutoADP ]Ribosylation of SDH and Other Post ]Translational Modifications 172 .9.4 Implications of the Binding of SDH to Mammalian Proteins for Cell Signaling and Virulence Mechanisms 173 .9.5 Surface Export of SDH/GAPDH: A Cause or Effect? 178 .9.6 SDH: The GAS Virulence Factor ]Regulating Virulence Factor 180 .9.7 Concluding Remarks and Future Perspectives 183 .References 183 .10 Group B Streptococcus GAPDH and Immune Evasion 195Paula Ferreira and Patrick Trieu ]Cuot .10.1 The Bacterium GBS 195 .10.2 Neonates are More Susceptible to GBS Infection than Adults 195 .10.3 IL ]10 Production Facilitates Bacterial Infection 196 .10.4 GBS Glyceraldehyde ]3 ]Phosphate Dehydrogenase Induces IL ]10 Production 197 .10.5 Summary 199 .References 200 .11 Mycobacterium tuberculosis Cell ]Surface GAPDH Functions as a Transferrin Receptor 205Vishant M. Boradia, Manoj Raje, and Chaaya Iyengar Raje .11.1 Introduction 205 .11.2 Iron Acquisition by Bacteria 206 .11.3 Iron Acquisition by Intracellular Pathogens 207 .11.4 Iron Acquisition by M. tb 208 .11.5 Glyceraldehyde ]3 ]Phosphate Dehydrogenase (GAPDH) 210 .11.6 Macrophage GAPDH and Iron Uptake 210 .11.7 Mycobacterial GAPDH and Iron Uptake 212 .11.8 Conclusions and Future Perspectives 216 .Acknowledgements 218 .References 219 .12 GAPDH and Probiotic Organisms 225Hideki Kinoshita .12.1 Introduction 225 .12.2 Probiotics and Safety 225 .12.3 Potential Risk of Probiotics 227 .12.4 Plasminogen Binding and Enhancement of its Activation 228 .12.5 GAPDH as an Adhesin 229 .12.6 Binding Regions 232 .12.7 Mechanisms of Secretion and Surface Localization 234 .12.8 Other Functions 235 .12.9 Conclusion 236 .References 237 .Part 3.4 Cell ]Surface Enolase: A Complex Virulence Factor 245 .13 Impact of Streptococcal Enolase in Virulence 247Marcus Fulde and Simone Bergmann .13.1 Introduction 247 .13.2 General Characteristics 248 .13.3 Expression and Surface Exposition of Enolase 249 .13.4 Streptococcal Enolase as Adhesion Cofactor 252 .13.5 Enolase as Pro ]Fibrinolytic Cofactor 256 .13.6 Streptococcal Enolase as Cariogenic Factor in Dental Disease 258 .13.7 Conclusion 258 .Acknowledgements 259 .References 259 .14 Streptococcal Enolase and Immune Evasion 269Masaya Yamaguchi and Shigetada Kawabata .14.1 Introduction 269 .14.2 Localization and Crystal Structure 271 .14.3 Multiple Binding Activities of  ]Enolase 273 .14.4 Involvement of  ]Enolase in Gene Expression Regulation 276 .14.5 Role of Anti ] ]Enolase Antibodies in Host Immunity 277 .14.6 ]Enolase as Potential Therapeutic Target 279 .14.7 Questions Concerning ]Enolase 281 .References 281 .15 B. burgdorferi Enolase and Plasminogen Binding 291Catherine A. Brissette .15.1 Introduction to Lyme Disease 291 .15.2 Life Cycle 292 .15.3 Borrelia Virulence Factors 292 .15.4 Plasminogen Binding by Bacteria 293 .15.5 B. burgdorferi and Plasminogen Binding 294 .15.6 Enolase 295 .15.7 B. burgdorferi Enolase and Plasminogen Binding 297 .15.8 Concluding Thoughts 301 .Acknowledgements 301 .References 301 .Part 3.5 Other Glycolytic Enzymes Acting as Virulence Factors 309 .16 Triosephosphate Isomerase fromStaphylococcus aureus and Plasminogen Receptors on Microbial Pathogens 311Reiko Ikeda and Tomoe Ichikawa .16.1 Introduction 311 .16.2 Identification of Triosephosphate Isomerase on S. aureus as a Molecule that Binds to the Pathogenic Yeast C. neoformans 312 .16.3 Binding of Triosephosphate Isomerase with Human Plasminogen 314 .16.4 Plasminogen ]Binding Proteins on Trichosporon asahii 314 .16.5 Plasminogen Receptors on C. neoformans 316 .16.6 Conclusions 316 .References 317 .17 Moonlighting Functions of Bacterial Fructose 1,6 ]Bisphosphate Aldolases 321Neil J Oldfield, Fariza Shams, Karl G Wooldridge, and David PJ Turner .17.1 Introduction 321 .17.2 Fructose 1,6 ]bisphosphate Aldolase in Metabolism 321 .17.3 Surface Localization of Streptococcal Fructose 1,6 ]bisphosphate Aldolases 322 .17.4. Pneumococcal FBA Adhesin Binds Flamingo Cadherin Receptor 323 .17.5 FBA is Required for Optimal Meningococcal Adhesion to Human Cells 324 .17.6 Mycobacterium tuberculosis FBA Binds Human Plasminogen 325 .17.7 Other Examples of FBAs with Possible Roles in Pathogenesis 326 .17.8 Conclusions 327 .References 327 .Part 3.6 Other Metabolic Enzymes Functioning in Bacterial Virulence 333 .18 Pyruvate Dehydrogenase Subunit B and Plasminogen Binding in Mycoplasma 335Anne Gründel, Kathleen Friedrich, Melanie Pfeiffer, Enno Jacobs, and Roger Dumke .18.1 Introduction 335 .18.2 Binding of Human Plasminogen to M. pneumoniae 337 .18.3 Localization of PDHB on the Surface of M. pneumoniae Cells 340 .18.4 Conclusions 343 .References 344 .Part 3.7 Miscellaneous Bacterial Moonlighting Virulence Proteins 349 .19 Unexpected Interactions of Leptospiral Ef ]Tu and Enolase 351Natália Salazar and Angela Barbosa .19.1 Leptospira Host Interactions 351 .19.2 Leptospira Ef ]Tu 352 .19.3 Leptospira Enolase 353 .19.4 Conclusions 354 .References 354 .20 Mycobacterium tuberculosis Antigen 85 Family Proteins: Mycolyl Transferases and Matrix ]Binding Adhesins 357Christopher P. Ptak, Chih ]Jung Kuo, and Yung ]Fu Chang .20.1 Introduction 357 .20.2 Identification of Antigen 85 358 .20.3 Antigen 85 Family Proteins: Mycolyl Transferases 359 .20.4 Antigen 85 Family Proteins: Matrix ]Binding Adhesins 361 .20.5 Conclusion 365 .Acknowledgements 365 .References 365 .Part 3.8 Bacterial Moonlighting Proteins that Function as Cytokine Binders/Receptors 371 .21 Miscellaneous IL ]1 ]Binding Proteins of Aggregatibacter actinomycetemcomitans 373Riikka Ihalin .21.1 Introduction 373 .21.2 A. actinomycetemcomitans Biofilms Sequester IL ]1 374 .21.3 A. actinomycetemcomitans Cells Take in IL ]1 375 .21.4 The Potential Effects of IL ]1 on A. actinomycetemcomitans 379 .21.5 Conclusions 381 .References 382 .Part 3.9 Moonlighting Outside of the Box 387 .22 Bacteriophage Moonlighting Proteins in the Control of Bacterial Pathogenicity 389Janine Bowring, Alberto Marina, José R Penadés, and Nuria Quiles ]Puchalt .22.1 Introduction 389 .22.2 Bacteriophage T4 I ]TevI Homing Endonuclease Functions as a Transcriptional Autorepressor 391 .22.3 Capsid Psu Protein of Bacteriophage P4 Functions as a Rho Transcription Antiterminator 394 .22.4 Bacteriophage Lytic Enzymes Moonlight as Structural Proteins 398 .22.5 Moonlighting Bacteriophage Proteins De ]Repressing Phage ]Inducible Chromosomal Islands 398 .22.6 dUTPase, a Metabolic Enzyme with a Moonlighting Signalling Role 401 .22.7 Escherichia coli Thioredoxin Protein Moonlights with T7 DNA Polymerase for Enhanced T7 DNA Replication 404 .22.8 Discussion 404 .References 406 .23 Viral Entry Glycoproteins and Viral Immune Evasion 413Jonathan D. Cook and Jeffrey E. Lee .23.1 Introduction 413 .23.2 Enveloped Viral Entry 414 .23.3 Moonlighting Activities of Viral Entry Glycoproteins 415 .23.4 Viral Entry Proteins Moonlighting as Saboteurs of Cellular Pathways 427 .23.5 Conclusions 429 .References 429 .Index 439

  • ISBN: 978-1-118-95111-8
  • Editorial: Wiley–Blackwell
  • Encuadernacion: Cartoné
  • Páginas: 472
  • Fecha Publicación: 28/03/2017
  • Nº Volúmenes: 1
  • Idioma: Inglés