Uniformly accelerating charged particles: a threat to the equivalence principle

Uniformly accelerating charged particles: a threat to the equivalence principle

Lyle, S.

161,15 €(IVA inc.)

There has been a long debate about whether uniformly accelerated charges should radiate electromagnetic energy and how one should describe their worldline through a flat spacetime, i.e., whether the Lorentz-Dirac equation is right. There are related questions in curved spacetimes, e.g., do different varieties of equivalence principle apply to charged particles, and can a static charge in a static spacetime radiate electromagnetic energy? The problems with the LD equation in flat spacetime are spelt out in some detail here, and its extension to curved spacetime is discussed. Different equivalence principles are compared and some vindicated. The key papers are discussed in detail and many of their conclusions are significantly revised by the present solution. Addresses and even solves open questions in General Relativity Reviews wide range of partly conflicting literature INDICE: A Doubt about the Equivalence Principle.- From Minkowski Spacetimeto General Relativity.- Gravity as a Force in Special Relativity.- Applying the Strong Equivalence Principle.- The Debate Continues.- A More Detailed Radiation Calculation.- Defining the Radiation from a Uniformly Accelerating Charge.- Energy Conservation for a Uniformly Accelerated Charge.- The Threat to the Equivalence Principle According to Fulton and Rohrlich.- Different Predictionsof Special Relativity and General Relativity.- Derivation of the Lorentz–Dirac Equation.- Extending the Lorentz–Dirac Equation to Curved Spacetime.- StaticCharge in a Static Spacetime.- A Radiation Detector.- The Definitive Mathematical Analysis.- Interpretation of Physical Quantities in General Relativity.- Summary.- Conclusion

  • ISBN: 978-3-540-68469-5
  • Editorial: Springer
  • Encuadernacion: Cartoné
  • Páginas: 354
  • Fecha Publicación: 01/07/2008
  • Nº Volúmenes: 1
  • Idioma: Inglés