Molecules at work

Molecules at work

Pignataro, Bruno

111,01 €(IVA inc.)

Providing a comprehensive overview of current developments in innovative materials science and related topics, this book covers the core areas of materialsscience, inorganic, organic and solid state chemistry.The authors are among the rising stars in European chemistry, a selection of participants in the 2010European Young Chemists Award competition, and their contributions deal with most of the frontier issues in materials and nanoscience as well as chemistry.They give an account of the latest research results, as well as the outlook for the future. INDICE: Preface XIIIList of Contributors XXIPart I Self Assembly 11 Yoctoliter-Sized Vessels as Potential Biological Models 3Sheshanath V. Bhosale, Bradley E. Wilman, and Steven J. Langford1.1 Introduction 31.2 Cavities on Glass Plates and Gold Surfaces 51.3 Preparation and Confirmation of Rigid Yoctowell Cavity 61.3.1 Confirmation of Rigid Gaps 71.4 Molecular Sorting 71.5 Yoctowell-Based Molecular Recognition Events 91.6 Conclusion 11Acknowledgments 12References 122 Switchable Host-Guest Interactions of Supramolecular Rings and Cages 13Guido H. Clever2.1 Introduction 132.2 Host-Guest Chemistry 152.3 Switching inSupramolecular Systems 172.4 Natural Paragons 192.5 Types of External Input and Methods for Analysis 202.5.1 Switchable Host Compounds 212.5.2 Switchable Guest Compounds 262.6 Conclusion 33References 34Part II NanoMaterials 393 Tailored Graphene-Type Molecules by Chemical Synthesis 41Milan Kivala and Xinliang Feng3.1 Introduction 413.2 Synthetic Concepts toward Expanded PAHs - Nanographenes 433.2.1 Hexabenzocoronenes (HBCs) and Related Systems 433.2.2 Large PAHs 483.2.3 Graphene Nanoribbons 553.2.4 Heteroatom-Containing PAHs 603.3 Conclusion and Outlook 64References 664 Analyzing the Surface Area Properties of Microporous Materials 71Abbie Trewin4.1 Introduction 714.1.1 Energy 714.1.2 H2 Storage 714.1.3 CO2 Capture and Sequestration 724.1.4 Gas Separation 734.2 Microporous Materials 744.2.1 Framework Materials 744.2.2 Network Materials 744.2.3 Molecular Materials 764.2.4 Structural Flexibility 794.3 Porosity 814.3.1 What Is Porosity? 814.3.2 Intrinsic versus Extrinsic Porosity 814.3.3 Measuring Porosity 824.3.4 Calculated Surface Areas and Simulated Gas Uptakes 834.3.5 Gas-Diffusion Mechanisms 844.4 Porous Materials and Calculating Surface Areas 854.4.1 Framework Materials 854.4.2 Network Materials 864.4.3 Molecular Materials 884.4.4 Molecular Solids with Some Extrinsic Porosity 894.4.5 Molecular Solids with Intrinsic Porosity 904.5 Summary 92Acknowledgments 92References 935 Nanostructured Materials Based on Core-Substituted Naphthalene Diimides 97Sheshanath V. Bhosale, Bradley E. Wilman, and Steven J. Langford5.1 Introduction 975.2 Synthesis of Novel cNDI Derivatives 995.3 Electron Transfer 1025.4 Supramolecular Self-Assembly of cNDI 1055.5 Conclusion 110Acknowledgments 110References 1106 Metal Phosphides: From Chemist’s Oddities to Designed Functional Materials113Sophie Carenco, Matthieu Demange, C dric Boissière, Cl ment Sanchez, and Nicolas M zailles6.1 Introduction 1136.2 Bulk Metal Phosphides: A Long History1136.2.1 A New Family of Synthetic Inorganic Materials 1136.2.2 First Set of Applications 1146.2.3 Bulk Metal Phosphides and Today’s Applications 1146.3 White Phosphorus for the Low-Temperature Synthesis of Metal Phosphide Nanoparticles 1156.3.1 White Phosphorus as a Low-Temperature Reagent 1156.3.2 Aryl- and Alkyl-Phosphines as P’’ Atom Donor in Harsh Conditions for the Synthesis of Metal Phosphide Nanoparticles 1156.3.3 Nickel Phosphide Nanoparticles from P4 inStoichiometric and Mild Conditions 1166.3.4 Generalization of the White Phosphorus Nanoscale Route 118References 1197 Artificial Supermolecule’’: Progress in the Study of II-V Colloidal Semiconductor Nanocrystals 121Shiding Miao, Alexander Eychmüller, and Stephen G. Hickey7.1 Introduction 1217.2 Optical Properties of II-V Nanocrystals 1247.2.1 Absorption 1247.2.2 Photoluminescence 1277.2.3 Lifetime Measurement 1317.3 Synthesis of II-V Nanocrystals 1337.3.1 Synthesis Methods 1337.3.2 Synthesis of Cd3P2 Nanocrystals 1347.3.2.1 Hot-Injection’’ Synthesis 1347.3.2.2 High-Temperature, Gas-Bubbling Synthesis with Ex Situ-Produced PH3 1397.3.3 Synthesis of Zn3P2 Nanocrystals 1407.3.4 Synthesis of Cd3As2 Nanocrystals 1427.3.5 Summary of the Synthesis of II-V Nanocrystals 1437.4 Conclusions and Outlook 143References 1468 Luminescent Dendrimers 155GiacomoBergamini8.1 Introduction 1558.2 Intrinsic Photochemical and Photophysical Properties of Organic Dendrimers 1568.3 Energy Transfer and Energy Upconversion in Multichromophoric Dendrimers 1618.4 Dendrimers as Ligands for Metal Ions 1648.5 Self-Assembly 1688.6 Dendrimers as Photoswitchable Hosts 1708.7 Conclusion and Perspectives 172References 1739 Fabrication of Ultramicroporous Silica Membranes for Pervaporation and Gas Separation 177Vittorio Boffa9.1 Ultramicroporous Silica Membranes 1779.1.1 Context 1779.1.2 Gas Separation and Pervaporation 1779.1.3 Fabrication 1809.1.4 Microporosity Assessment in Silica Membranes1829.1.5 Hydrothermal Stability-Instability of Microporous Silica 1849.2 MxOy-Silica Membrane 1859.2.1 Fabrication 1859.2.2 Stability, Selectivity, and Reactivity 1879.2.3 Membrane Optimization 1939.3 Hybrid Organic-Silica Membranes1939.3.1 Fabrication 1939.3.2 Hydrophobic’’ Silica Membranes 1969.3.3 Membranes from Bridged Organosilanes 1979.3.4 Organic-Silica Membranes for CO2 Separation 1999.4 Perspectives in the Fabrication and Application of Silica Membranes 200References 20010 New Directions in the Fight against Cancer: From Metal Complexes to Nanostructured Materials 207Santiago Gómez-Ruiz10.1 Introduction 20710.2 Metal Complexes in Cancer Treatment 20810.2.1 Platinum Complexes 20810.2.2 Non-Platinum Transition-Metal Complexes 21010.2.2.1 Group 4 Metal Complexes 21110.2.2.2 Group 8 Metal Complexes 21310.2.2.3 Group 11 Metal Complexes 21610.2.3 Main Group-Metal Complexes 21910.2.3.1 Gallium Complexes 21910.2.3.2 Tin Complexes 22010.3 Nanostructured Materials in Cancer Treatments 22110.3.1 Macromolecular Systems 22210.3.1.1 Cucurbit[n]urils and Cyclodextrins 22210.3.1.2 Liposomes and Lipid Nanocapsules 22310.3.1.3 Other Macromolecular Systems 22410.3.2 Ceramic Materials 22410.3.2.1 Nanostructured Calcium-Phosphate-Based Materials Functionalized with Metal Complexes 22610.3.2.2 Mesoporous Silicas Functionalized with Metal Complexes 22710.3.2.3 Carbon Nanotubes Functionalizedwith Metal Complexes 22810.3.3 Nanoparticles 230References 230Part III Molecular Machinery 24311 Molecular Rotors: Imaging Intracellular Viscosity 245Marina K. Kuimova11.1 Introduction 24511.2 Theoretical Background 24611.3 Biological Applications of Molecular Rotors 24711.3.1 Fluorescence-Lifetime-Based Molecular Rotors 24911.3.2 Time-Resolved Fluorescence Anisotropy Measurements of Molecular Rotors 25211.3.3 Ratiometric Fluorescent Molecular Rotors 25511.3.4 Ratiometric Molecular Rotor Measurements of Viscosity during PDT 25711.4 Conclusions and Outlook 258Acknowledgments 259References 25912 Surface-FunctionalizedInorganic Colloidal Nanocrystals in Functional Nanocomposite Materials for Microfabrication 263Chiara Ingrosso, Marinella Striccoli, Angela Agostiano, and Maria Lucia Curri12.1 Introduction 26312.2 Colloidal Nanocrystals: Properties,Synthesis, and Surface Functionalization 26412.2.1 Properties of Nanocrystals26412.2.2 Colloidal Synthesis of Nanocrystals 26512.2.3 Surface Functionalization of Nanocrystals 26612.3 NC-Based Nanocomposites for Microfabrication 26912.4 Conclusions and Future Perspectives 279References 28013 Fluorescence Sensing of Temperature and Oxygen with Fullerenes 285MÃírio N. Berberan-Santos and Carlos BaleizÃño13.1 Introduction 28513.2 Thermally Activated Delayed Fluorescence: Fundamental Aspects 28713.3 Sensing Applications 29213.3.1 Oxygen Sensing 29313.3.1.1 Sub-ppm Oxygen Sensor Based on C70 29413.3.1.2 C70 in a Dual Sensor System 29713.3.2 Temperature Sensing 30013.3.2.1 C70 Dispersed in Polymer Films 30213.3.2.2 C70 Encapsulated in Polymer Nanoparticles 30413.4 Conclusions and Future Perspectives 307Acknowledgments 308References 30814 Going beyond Glucose Sensing with Boronic Acid Receptors 315Alexander Schiller14.1 Introduction 31514.2 Indicator Displacement Assays for the Detection of Sugars 31614.3Glucose Sensing with Boronic Acid Receptors 31714.3.1 Allosteric Indicator Displacement Assay for the Detection of Carbohydrates 31814.3.2 AIDA Saccharide Sensing System - Boronic-Acid-Appended Benzyl Bipyridinum Salts and a Fluorescent Reporter Dye 31914.3.3 AIDA Glucose Sensor for Continuous Monitoring 32014.4 Solution-Phase Sensor Arrays with Boronic-Acid-Appended Bipyridinium Salts 32114.4.1 Recognition of Neutral Saccharides 32214.4.2 Recognition of Phosphosugars and Nucleotides 32414.5 Carbohydrate-Active Enzyme Assays 32714.6 Boronic-Acid-Appended Bipyridinium Salts at Work - NOVOSIDES 33014.7 Conclusions andPerspectives 333Acknowledgments 334References 33415 Design of Novel Iridium Complexes to Obtain Stable and Efficient Light-Emitting Electrochemical Cells339Rubèn D. Costa15.1 Brief History of Electroluminescence and Optoelectronic Devices 33915.2 Light-Emitting Electrochemical Cells: Motivation and Definition34015.3 Ionic Transition-Metal Complexes Based on Ir(III) Metal Core for LECs34315.4 Strategies to Design Iridium(III) Complexes for Highly Efficient LECs34615.5 Strategies to Design Iridium(III) Complexes for Highly Stable LECs 35015.6 Outlook and Conclusions 356Acknowledgments 357References 35716 Photochemically Driven Molecular Devices and Machines 361Serena Silvi16.1 Introduction 36116.1.1 Features of Molecular Devices and Machines 36116.2 Switches and Logic Gates 36316.3 Molecular Machines 36916.3.1 Threading-Dethreading Motions 37116.3.2 Molecular Shuttles 37516.4 Conclusions 380Acknowledgments 381References381Index 385

  • ISBN: 978-3-527-33093-5
  • Editorial: Wiley-VCH
  • Encuadernacion: Cartoné
  • Páginas: 410
  • Fecha Publicación: 18/04/2012
  • Nº Volúmenes: 1
  • Idioma: Inglés