Power ultrasound in electrochemistry: from versatile laboratory tool to engineering solution

Power ultrasound in electrochemistry: from versatile laboratory tool to engineering solution

Pollet, Bruno

130,60 €(IVA inc.)

The use of power ultrasound to promote industrial electrochemical processes, or sonoelectrochemistry, was first discovered over 70 years ago, but recently there has been a revived interest in this field. Sonoelectrochemistry is a technology that is safe, cost-effective, environmentally friendly and energy efficient compared to other conventional methods. The book contains chapters on the following topics, contributed from leading researchers in academia and industry: Use of electrochemistry as a tool to investigate Cavitation Bubble DynamicsSonoelectroanalysisSonoelectrochemistry in environmental applicationsOrganic SonoelectrosynthesisSonoelectrodepositionInfluence of ultrasound on corrosion kinetics and its application to corrosion testsSonoelectropolymerisationSonoelectrochemical production of nanomaterialsSonochemistry and Sonoelectrochemistry in hydrogen and fuel cell technologies INDICE: Foreword xiiiAbout the Editor xvList of Contributors xviiAcknowledgements xixIntroduction to Electrochemistry 1Bruno G. Pollet and Oliver J. CurnickI.1 Introduction 1I.2 Principles of Electrochemistry 1I.3 Electron-Transfer Kinetics 2I.4 Determination of Overpotentials 10I.4.1 Decomposition Voltages10I.4.2 Discharge Potentials 10I.5 Electroanalytical Techniques 11I.5.1 Voltammetry 11I.5.2 Amperometry 171 An Introduction to Sonoelectrochemistry 21Timothy J. Mason and Ver´onica S´aez Bernal1.1 Introduction to Ultrasound and Sonochemistry 211.2 Applications of Power Ultrasound through Direct Vibrations 231.2.1 Welding 231.3 Applications of Power Ultrasound through Cavitation 251.3.1 Homogeneous Reactions 261.3.2 Heterogeneous Reactions Involving a Solid/Liquid Interface 261.3.3 Heterogeneous Liquid/Liquid Reactions 271.4 Electrochemistry 271.5 Sonoelectrochemistry - The Application of Ultrasound in Electrochemistry 281.5.1 Ultrasonic Factors that Influence Sonoelectrochemistry 291.6 Examples of the Effect of Ultrasound on Electrochemical Processes under Mass Transport Conditions 321.7 Experimental Methods for Sonoelectrochemistry 341.7.1 Cell Construction 341.7.2 Stability of the Electrodes Under Sonication 361.7.3 Some Applications of Sonoelectrochemistry 382 The Use of Electrochemistry as a Tool to Investigate Cavitation Bubble Dynamics 45Peter R. Birkin2.1 Introduction 452.2 An Overview of Bubble Behaviour 462.3 Mass Transfer Effects of Cavitation 482.4 Isolating Single Mechanisms for Mass Transfer Enhancement 482.5 Electrochemistry Next to a Tethered Permanent Gas Bubble 512.6 Mass Transfer fromForced Permanent Gas Bubble Oscillation 552.7 Mass Transfer Effects from Single Inertial Cavitation Bubbles 622.8 Investigating Non-inertial Cavitation Under an Ultrasonic Horn 652.9 Measuring Individual Erosion Events from Inertial Cavitation 672.10 Conclusions 733 Sonoelectroanalysis: An Overview 79Jonathan P. Metters, Jaanus Kruusma and Craig E. Banks3.1 Introduction 793.2 Analysis of Pesticides 873.3 Quantifying Nitrite 873.4 Biogeochemistry 883.5 QuantifyingMetal in 'Life or Death' Situations 893.6 Analysis of Trace Metals in Clinical Samples 903.7 Biphasic Sonoelectroanalysis 923.8 Applying Ultrasound into the Field: The Sonotrode 933.9 Conclusions 934 Sonoelectrochemistry in Environmental Applications 101Pedro L. Bonete Ferrandez, Marıa Deseada Esclapez, Veronica Saez Bernal and Jose Gonzalez-Garcıa4.1 Introduction 1014.2 Sonoelectrochemical Degradation of Persistent Organic Pollutants 1024.2.1 Sonoelectrochemical Applications 1024.2.2 Hybrid Sonoelectrochemical Techniques Applications 1154.3 Recovery of Metals and Treatment of Toxic Inorganic Compounds 1214.4 Disinfection of Water by Hypochlorite Generation 1294.5 Soil Remediation 1304.6 Conclusions 1345 Organic Sonoelectrosynthesis 141David J. Walton5.1 Introduction1415.2 Scale-Up Considerations 1425.3 Early History of Organic Sonoelectrochemistry 1435.4 Electroorganic Syntheses 1445.4.1 Electroreductions 1445.4.2 Organochalcogenides 1495.4.3 Synthetic Electrooxidations 1515.4.4 Sonoelectrochemically Produced Electrode Coatings: Desirable and Undesirable 1575.5 Other Systems 1615.5.1 Hydrodynamics 1615.5.2 Low-temperature Effects 1625.6 Conclusions 1636 Sonoelectrodeposition: The Use of Ultrasound in Metallic Coatings Deposition 169Jean-Yves Hihn, Francis Touyeras, Marie-Laure Doche, Cedric Costa andBruno G. Pollet6.1 Introduction to Metal Plating 1696.1.1 Why the Need to Cover Surfaces with Metals? 1696.1.2 Process and Technology of Plating 1706.2 TheUse of Ultrasound in Surface Treatment 1706.2.1 Ultrasound in the Cleaning Step for Surface Treatment Processes 1706.3 Ultrasound and Plating: Why Study Plating under Sonication? 1726.4 Electrodeposition Assisted by Ultrasound 1736.4.1 The Electrodeposition Process 1736.4.2 Ultrasonic Effects on Electrodeposited Coating Properties 1756.4.3 Microscopic Effects of Ultrasound on Electrodeposited Metal Coatings 1796.4.4 The Influence of Acoustic Energy Distribution on Coatings 1826.4.5 Influence of Ultrasound on Copper Electrodeposition in Unconventional Solvents 1876.4.6 Incorporation of Particles Assisted by Ultrasound 1956.5 Electroless Coating Assisted by Ultrasound 1986.5.1 The Electroless Process 1986.5.2 Ultrasound Effects upon Electroless Coating Properties 1986.5.3 Copper Coating on Non-conductive Substrates under Insonation 2017 Influence of Ultrasound on Corrosion Kinetics and its Application to Corrosion Tests 215Marie-Laure Doche and Jean-Yves Hihn7.1 Introduction to Metal Corrosion 2157.1.1 What Exactly is Corrosion? 2157.1.2 Why Do Metals Corrode? 2157.1.3 The Price to Pay: the Economical Impact of Corrosion 2167.1.4 Corrosion Control Technology: the Need for Reliable Corrosion Tests 2177.1.5 Why Study Corrosion Under Sonication? 2197.1.6 Corrosion and Corrosion-Cavitation Mechanisms 2207.1.7 Corrosion Rate 2217.1.8 Electrochemical Study of Corrosion Reactions 2227.1.9 Forms of Corrosion 2237.1.10 Cavitation-Corrosion 2237.2 Influence of Ultrasound on the Corrosion Mechanisms of Metals 2317.2.1 Influence of Ultrasound on General Corrosion 2327.2.2 Influence of Ultrasound on Passivity of Metals 2407.3 Ultrasound as a Tool to Develop Accelerated Corrosion Testing 2427.3.1 Atmospheric Corrosion of Zinc Plated Steel 2427.3.2 Accelerated Corrosion Test for Stainless Steel Used in Exhaust Systems 2437.3.3 Accelerated Corrosion Test for Evaluating Oilfield Corrosion Inhibitors 2437.3.4 Accelerated Corrosion Testfor Surgical Implant Materials in Body Fluids 2448 Sonoelectropolymerisation 249Fabrice Lallemand, Jean-Yves Hihn, Mahito Atobe and Abdeslam Et Taouil8.1 Introduction to Electropolymerisation 2498.2 Innovative Processes for ElectrodeActivation 2518.3 Solubilisation of Monomers with Ultrasound 2568.4 Chemical Polymerisation 2578.5 Electropolymerisation under Ultrasonic Irradiation 2598.6 Effects of Ultrasound on Film Properties 2628.6.1 Mass-Transfer Effect 2628.6.2 Morphology Effect 2648.6.3 Doping Effect 2728.6.4 Effect on Local Control of Surfaces 2769 Sonoelectrochemical Production of Nanomaterials 283Jonathan P. Metters and Craig E. Banks9.1 Introduction 2839.2 Experimental Configurations 2869.3 Pure Metals 2879.3.1 Cobalt, Iron and Nickel 2879.3.2 Silver 2879.3.3Copper 2889.3.4 Magnesium 2889.3.5 Aluminium 2899.3.6 Lead and Cadmium 2909.3.7 Core Shell Nanoparticles 2909.3.8 Gold 2929.3.9 Tungsten 2959.4 Alloy Nanoparticles 2959.5 Polymer Nanoparticles 2969.6 Conclusions 29610 Sonochemistry and Sonoelectrochemistry in Hydrogen and Fuel Cell Technologies 301Bruno G. Pollet10.1 Introduction 30110.2 Sonoelectrochemical Production of Hydrogen 30310.3 Sonochemical Production of Noble Metals and Fuel Cell Electrocatalysts 30510.3.1 Sonochemical Mono-Metallic Syntheses 30610.3.2 Sonochemical Bi-Metallic Syntheses 30910.3.3 Sonochemical Perovskite Oxides Syntheses 31110.4 Sonoelectrochemical Production of Noble Metals and Fuel Cell Electrocatalysts 31110.4.1 Effect of Surfactants and Polymers 31510.4.2 Effect of Aqueous Solutions 31710.5 Sonochemical and Sonoelectrochemical Preparation of Fuel Cell Electrodes 31810.6 Industrial Applications of the Use of Ultrasound for the Fabrication of Fuel Cell Materials 31910.7 Conclusions 320Acknowledgement 321List of Abbreviations 321References 322Appendix: Sonochemical Effects on Electrode Kinetics 327Index 335

  • ISBN: 978-1-119-96739-2
  • Editorial: John Wiley & Sons
  • Encuadernacion: Rústica
  • Páginas: 364
  • Fecha Publicación: 20/02/2012
  • Nº Volúmenes: 1
  • Idioma: Inglés