Microwave engineering

Microwave engineering

Pozar, David M.

73,40 €(IVA inc.)

INDICE: 1 ELECTROMAGNETIC THEORY 1 1.1 Introduction to Microwave Engineering 1 Applications of Microwave Engineering 2 A Short History of Microwave Engineering 4 1.2 Maxwell's Equations 6 1.3 Fields in Media and Boundary Conditions10 Fields at a General Material Interface 12 Fields at a Dielectric Interface14 Fields at the Interface with a Perfect Conductor (Electric Wall) 14 The MagneticWall Boundary Condition 15 The Radiation Condition 15 1.4 The Wave Equation and Basic Plane Wave Solutions 15 The Helmholtz Equation 15 Plane Waves ina Lossless Medium 16 Plane Waves in a General Lossy Medium 17 Plane Waves in a Good Conductor 19 1.5 General Plane Wave Solutions 20 Circularly Polarized Plane Waves 24 1.6 Energy and Power 25 Power Absorbed by a Good Conductor 27 1.7 Plane Wave Reflection from a Media Interface 28 General Medium 28 Lossless Medium 30 Good Conductor 31 Perfect Conductor 32 The Surface Impedance Concept 33 1.8 Oblique Incidence at a Dielectric Interface 35 Parallel Polarization 36Perpendicular Polarization 37 Total Reflection and Surface Waves 38 1.9 Some Useful Theorems 40 The Reciprocity Theorem 40 Image Theory 42 2 TRANSMISSION LINE THEORY 48 2.1 The Lumped-Element Circuit Model for a Transmission Line 48 Wave Propagation on a Transmission Line 50 The Lossless Line 51 2.2 Field Analysis of Transmission Lines 51 Transmission Line Parameters 51 The Telegrapher Equations Derived from Field Analysis of a Coaxial Line 54 Propagation Constant, Impedance, and Power Flow for the Lossless Coaxial Line 56 2.3 The Terminated Lossless Transmission Line 56 Special Cases of Lossless Terminated Lines 592.4 The Smith Chart 63 The Combined ImpedanceAdmittance Smith Chart 67 The Slotted Line 68 2.5 The Quarter-Wave Transformer 72 The Impedance Viewpoint 72 The Multiple-Reflection Viewpoint 74 2.6 Generator and Load Mismatches 76 Load Matched to Line 77 Generator Matched to Loaded Line 77 Conjugate Matching 77 2.7 Lossy Transmission Lines 78 The Low-Loss Line 79 The Distortionless Line 80The Terminated Lossy Line 81 The Perturbation Method for Calculating Attenuation 82 The Wheeler Incremental Inductance Rule 83 2.8 Transients on Transmission Lines 85 Reflection of Pulses from a Terminated Transmission Line 86 BounceDiagrams for Transient Propagation 87 3 TRANSMISSION LINES AND WAVEGUIDES 95 3.1 General Solutions for TEM, TE, and TM Waves 96 TEM Waves 98 TE Waves 100 TM Waves 100 Attenuation Due to Dielectric Loss 101 3.2 Parallel Plate Waveguide 102 TEM Modes 103 TM Modes 104 TE Modes 107 3.3 Rectangular Waveguide 110 TEModes 110 TM Modes 115 TEm0 Modes of a Partially Loaded Waveguide 119 3.4 Circular Waveguide 121 TE Modes 122 TM Modes 125 3.5 Coaxial Line 130 TEM Modes 130 Higher Order Modes 131 3.6 Surface Waves on a Grounded Dielectric Sheet 135TM Modes 135 TE Modes 137 3.7 Stripline 141 Formulas for Propagation Constant, Characteristic Impedance, and Attenuation 141 An Approximate Electrostatic Solution 144 3.8 Microstrip Line 147 Formulas fo

  • ISBN: 978-0-470-63155-3
  • Editorial: John Wiley & Sons
  • Encuadernacion: Rústica
  • Páginas: 720
  • Fecha Publicación: 04/11/2011
  • Nº Volúmenes: 1
  • Idioma: Inglés