Ordered Mesoporous Materials

Ordered Mesoporous Materials

Zhao, Dongyuan
Wang, Jian-Ying
Zhou, Wuzong

156,00 €(IVA inc.)

The first book devoted to all aspects and types of mesoporous materials describes, in an in–depth and systematic manner, the step–by–step synthesis, synthesis mechanism, characterization, morphology control, hybridization, and applications of mesoporous molecular sieves. In so doing, it covers silicates, metal–doped silicates, non–silicates, and organic–inorganic hybrids. While the emphasis is on synthesis, the leading expert authors also discuss characterization and applications ranging from catalysis and biochemistry to optics and the use of these materials as templates for nanomaterial synthesis. Both the fundamentals as well as the latest research results are covered, ensuring this monograph serves as a handy reference for researchers as well as newcomers to the field. INDICE: Preface XI Abbreviations XIII 1 Introduction 1 References 4 2 Synthesis Approach of Mesoporous Molecular Sieves 5 2.1 Synthesis 5 2.2 Hydrothermal Synthesis 12 2.2.1 Surfactant 12 2.2.2 Inorganic Precursor 15 2.2.3 Synthesis Temperature 15 2.2.4 Synthetic Media 19 2.2.5 Hydrothermal Treatment 21 2.2.6 Formation Rate 23 2.2.7 Separation and Drying 23 2.3 Removal of Template 24 2.3.1 Calcination 24 2.3.2 Extraction 25 2.3.3 Supercritical Fluid Extraction 25 2.3.4 Microwave Irradiation 26 2.3.5 Ultraviolet Irradiation 27 2.3.6 Microwave Digestion 28 2.3.7 Oxidation of Ammonium Perchlorate 29 2.4 Basic Synthesis 30 2.5 Acidic Synthesis 30 2.6 Nonaqueous Syntheses 33 2.7 Postsynthesis Treatment 37 2.7.1 Hydrothermal Treatment 37 2.7.2 Secondary Synthesis 38 2.7.3 Recrystallization 38 2.8 Stability of Mesoporous Materials 39 2.8.1 Thermal Stability 39 2.8.2 Hydrothermal Stability 41 2.8.3 Mechanical Stability 44 2.9 Pore–Size Control 44 References 48 3 Mechanisms for Formation of Mesoporous Materials 55 3.1 Introduction 55 3.2 Synthesis Pathways 66 3.3 Mesophase Tailoring 73 3.3.1 Micellar Mesostructure 73 3.3.2 Critical Micelle Concentration 76 3.3.3 The Packing Parameter 76 3.3.4 The Hydrophilic/Hydrophobic Volume Ratio 79 3.3.5 Surfactant Phase Diagram 82 3.3.6 “Acid–Base” Route 84 3.4 Hard–Templating Approach 91 3.4.1 Precursor 92 3.4.1.1 Improving Volume Conversion 94 3.4.1.2 Improving the Interaction between Template and Precursor 97 3.4.1.3 Enhancing the Interaction between Precursors Themselves 98 3.4.2 Conversion of Precursors 100 3.4.3 The Infl uence of the Template Structure 102 3.4.3.1 Templates with 2D Channeled Pores 103 3.4.3.2 Templates with Cage–Like Pores 104 3.4.3.3 Templates with 3D Helix Channels 104 3.4.4 Replicated Mesoporous Carbon as a Hard Template 107 References 109 4 Structural Characterization Methods 117 4.1 XRD 117 4.1.1 Basic Principles of XRD 118 4.1.2 XRD Measurement 119 4.1.3 XRD Pattern Analysis 120 4.1.4 SAXS 122 4.2 Electron Microscopy 123 4.2.1 TEM 125 4.2.2 SAED 129 4.2.3 SEM 130 4.2.4 EDX 133 4.2.5 STEM 135 4.3 NMR 136 4.4 Physical Sorption 138 4.4.1 Basic Principles 138 4.4.2 Pore–Size Calculation 141 4.4.3 Window–Size Calculation for Cavity–Like Pores 144 4.4.4 Detection of Micropores and Mesopores 147 4.4.5 Other Probes 148 References 149 5 Representative Mesoporous Silica Molecular Sieves 153 5.1 D Mesostructures 153 5.1.1 MCM–41 153 5.1.2 SBA–15 161 5.1.3 Other 2D Phases 166 5.1.3.1 FSM–16 and FSM–10 166 5.1.3.2 KSW–2 168 5.1.3.3 SBA–3 168 5.1.3.4 SBA–8 170 5.1.3.5 CMI–1 170 5.1.3.6 AMS–3 171 5.2 3D Hexagonal Phases 171 5.2.1 SBA–2 171 5.2.2 SBA–12 176 5.2.3 IBN–9 178 5.3 Cubic Phases 181 5.3.1 MCM–48, FDU–5 and KIT–6 181 5.3.2 SBA–1 and SBA–6 190 5.3.3 SBA–16 192 5.3.4 FDU–1 195 5.3.5 FDU–2 196 5.3.6 FDU–12 and KIT–5 198 5.3.6.1 FDU–12 198 5.3.7 SBA–11 203 5.3.8 AMS–8 and AMS–10 205 5.4 Disordered Mesostructures 207 5.4.1 HMS and MSU 210 5.4.2 KIT–1 213 5.4.3 TUD–1 213 References 215 6 Doping in Mesoporous Molecular Sieves 219 6.1 Aluminum Doping 219 6.2 Boron Doping 224 6.3 Gallium and Indium Doping 226 6.4 Germanium and Tin Doping 227 6.5 Transition–Metal Doping 228 6.5.1 Titanium and Zirconium Doping 229 6.5.2 Vanadium and Niobium Doping 231 6.5.3 Chromium and Molybdenum Doping 232 6.5.4 Manganese Doping 233 6.5.5 Iron and Ruthenium Doping 234 6.5.6 Cobalt Doping 236 6.5.7 Copper and Zinc Doping 237 6.5.8 Hybrid Metal Doping 238 References 239 7 Morphology Control 243 7.1 The Methods and Techniques 243 7.2 Typical Morphologies 244 7.2.1 Fibers and Rods 244 7.2.2 Thin Films 254 7.2.3 Monoliths 260 7.2.4 Spheres 266 7.2.5 Single Crystals 270 7.3 Magnetically Responsive Ordered Mesoporous Materials 273 7.3.1 Magnetic Nanomaterials and Mesoporous Materials 273 7.3.2 Synthesis of Magnetic Mesoporous Materials 274 7.3.3 Sol–Gel Coating Approach 274 7.3.4 Postloading Approach 283 7.3.5 Nanocasting Synthesis 286 References 287 8 Mesoporous Nonsilica Materials 293 8.1 Mesoporous Carbon 293 8.1.1 Nanocasting 294 8.1.1.1 Morphology Control 297 8.1.1.2 Pore–Wall Structure Control 316 8.1.1.3 Special Mesostructured Templates 324 8.1.2 Surfactant Self–Assembly 325 8.1.2.1 Electrostatic Interaction 325 8.1.2.2 Compatibility between Block Copolymers and Precursors 327 8.1.2.3 Morphology Control 336 8.1.2.4 Hybrid Mesoporous Carbon Materials 337 8.1.2.5 Phenolic Resol and Titanium Complex 340 8.2 Mesoporous Polymers 341 8.2.1 Nanocasting 341 8.2.2 Direct Synthesis 348 8.2.2.1 In–Situ Crosslinkage of Micelles 348 8.2.2.2 Selective Etching of One Block in Ordered Aggregates of Block Copolymer 350 8.2.3 Surfactant Self–Assembly 351 8.3 Mesoporous Nonsiliceous Oxides 351 8.3.1 Surfactant Self–Assembly 352 8.3.2 Nanocasting 354 8.3.2.1 Mesoporous Silica Hard Template 354 8.3.2.2 Precursors and Filling Methods 363 8.3.2.3 Mesoporous Carbon Hard Template 370 8.4 Mesoporous Metals 371 8.4.1 LCT Mechanism 371 8.4.2 Nanocasting 374 8.5 Mesoporous Metal Chalcogenides 378 8.5.1 Cadmium, Zinc, Indium, Copper Chalcogenides 378 8.5.1.1 Soft–Templating Synthesis 378 8.5.1.2 Nancocasting Synthesis 381 8.5.2 Sn, Ge, Sb, Mo, W Chalcogenides 382 8.5.2.1 Soft–Templating Synthesis 382 8.5.2.2 Nanocasting Synthesis 384 8.6 Ordered Mesoporous Nonoxide Ceramic Materials 386 8.6.1 Mesoporous SiC Materials 386 8.6.2 Mesoporous Silicon Nitride and Oxynitride Materials 391 8.6.3 Mesoporous SiOC Materials 395 8.6.4 Mesoporous SiCN and SiBCN Materials 396 8.6.4.1 Nanocasting Synthesis 396 8.6.4.2 Direct Synthesis Based on Block Copolymer Self–Assembly 398 8.6.5 Mesoporous BN, B4C and BCN Materials 402 8.6.6 Mesoporous Carbon Nitride Materials 404 8.6.7 Mesoporous Phosphorus Nitrides 407 8.7 Mesoporous Metal Nitrides, Carbides and Fluorides 408 8.7.1 Mesoporous Metal Nitrides 408 8.7.2 Mesoporous Metal Fluoride Materials 411 8.7.3 Mesoporous Metal Carbides 412 References 414 9 Organic Group Functionalized Mesoporous Silicas 429 9.1 Synthetic Approaches 430 9.1.1 Grafting (“Two–Step”) Method 430 9.1.2 Cocondensation (“One–Pot”) Approach 434 9.1.3 Interaction of the Pore Wall with Organic Functional Group 436 9.1.3.1 Loading of Organic Groups 436 9.1.3.2 Mesostructure and Morphology 440 9.1.3.3 Condensation of Silanes 442 9.1.3.4 Distribution of Organic Functional Groups 444 9.2 Combinatorial Synthesis 446 9.3 Accessibility to the Active Site and Applications 451 9.3.1 Spatial Effect 451 9.3.2 Further Reactive Ability 453 9.3.3 Adsorption Properties 455 9.4 Conclusions 459 References 459 10 Applications of Mesoporous Molecular Sieves 465 10.1 Catalysts and Carriers 465 10.1.1 Inclusion of Dispersed Atomic–Level Heteroatoms or Oxide Species 465 10.1.1.1 Acidic Catalysis 466 10.1.1.2 Basic Catalysis 469 10.1.1.3 Oxidation Catalysis 470 10.1.2 Loading Highly Dispersed Metals and Their Nanoparticles 472 10.1.3 Loading of Molecular Catalysts 474 10.1.4 Nonsilica Mesoporous Materials as Carriers 478 10.2 Biology, Separation and Adsorption 479 10.2.1 Biological Field 479 10.2.2 Separation and Adsorption 487 10.3 Photoelectric Applications 488 10.4 High–Tech Fields Such as Electromagnetism 492 10.4.1 Electrochemical Capacitors 492 10.4.1.1 Double–Layer Capacitor 493 10.4.1.2 Pseudocapacitance Capacitor 497 10.4.1.3 Lithium Ion Battery 499 10.4.1.4 Lithium–Sulfur Battery 502 10.4.1.5 Fuel Cells 504 References 506 11 Outlook 513 Index 519

  • ISBN: 978-3-527-32635-8
  • Editorial: Wiley VCH
  • Encuadernacion: Cartoné
  • Páginas: 544
  • Fecha Publicación: 16/01/2013
  • Nº Volúmenes: 1
  • Idioma: Inglés